飞桨平台搭建PP-YOLOE模型
一、创建项目
此博客仅是运行PP-YOLOE源码,这里以变压器渗漏数据集为例COCO数据集太大了,跑不动,V100训练预估计得7天左右,即便是A100也得4天半,变压器渗漏油数据集跑一个小时左右,还可以接受,那么不墨迹直接进入手把手环节。
首先,进入百度搜索飞桨,进入云平台选择项目–>创建项目–>NoteBook

然后,输入项目名称,添加数据集(点击添加数据集,按需搜索即可,也可自己创建数据集)。之后点击高级配置,根据自己的需求选择合适的配置,我这里用到了PaddlePaddle2.5.0版本的框架,所以选择了BML Codelab(AI Studio没有PaddlePaddle2.5.0),之后项目框架选择PaddlePaddle2.5.0,选择项目的标签(可以根据项目选择随便选),项目描述可写。。。


之后,点击创建即可创建项目,并自动进入项目,点击启动环境即可进入项目编辑。

值得一提的是,点击启动环境之后,有一个选择环境的选项。百度每天会赠送算力卡8个点,基础版(无GPU)不浪费点,V100(16GB)一个小时2个点(相当于一天有4个小时免费),V100(32GB)一个小时3个点(相当于一天不到3个小时),如需更多时间或者更高级的GPU,需要开会员,花钱了,应该是一个月19.9RMB。

二、搭建PP-YOLOE模型
为了能多跑几个小时,保证科研的资源充分利用性,可以先用基础版启动环境,搭建模型,然后切换环境用V100甚至更好的GPU跑。
上图中点击确定后,点击进入 即可进入项目。


2.1 配置环境
输入如下程序,克隆PaddleDetection项目,因为我选的是PaddlePaddle2.5.0因此选择2.5版本项目。
%cd work/
# gitee 国内下载比较快
!git clone https://gitee.com/paddlepaddle/PaddleDetection.git -b release/2.5
# github 下载慢,需要等待很长时间
# !git clone https://github.com/PaddlePaddle/PaddleDetection.git -b release/2.5
此时程序被Clone到work文件夹下,点进去就可以看到项目。

然后一次输入如下的程序,配置所需要的环境和库(这里一步一步来,不要着急,一个一个运行)
#安装PaddleDetection依赖
!pip install -r /home/aistudio/work/PaddleDetection/requirements.txt
#编译安装paddledet
%cd work/PaddleDetection
!python setup.py install
#安装其他依赖
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import os
import random
#测试安装是否成功,最后输出OK,说明编译安装成功
!python ppdet/modeling/tests/test_architectures.py
出现如下图片中的结果表示成功了

另外,还要装一个库pycocotools,后面训练会用到,不然会报错。
!pip install pycocotools
2.2 准备数据集
目前给出的数据集是VOC格式的,然而PP-YOLOE仅支持COCO数据集,因此需要将数据集进行转换,转换成COCO标准格式。
依次执行如下程序即可。注意:解压数据集时路径“data“后面要改,
#解压数据集
!unzip -oq /home/aistudio/data/data180502/oil.zip -d /home/aistudio/data/#划分数据集
#根据挂载的数据集制作制作标签文件,并进行划分
#生成train.txt和val.txt
random.seed(2020)
xml_dir = '/home/aistudio/data/oil/Annotations'#标签文件地址
img_dir = '/home/aistudio/data/oil/JPEGImages'#图像文件地址
path_list = list()
for img in os.listdir(img_dir):img_path = os.path.join(img_dir,img)xml_path = os.path.join(xml_dir,img.replace('jpg', 'xml'))path_list.append((img_path, xml_path))
random.shuffle(path_list)
ratio = 0.8 #测试集和验证集划分比例0.8:0.2
train_f = open('/home/aistudio/data/oil/train.txt','w') #生成训练文件
val_f = open('/home/aistudio/data/oil/val.txt' ,'w')#生成验证文件for i ,content in enumerate(path_list):img, xml = contenttext = img + ' ' + xml + '\n'if i < len(path_list) * ratio:train_f.write(text)else:val_f.write(text)
train_f.close()
val_f.close()#生成标签文档
label = ['oil']#设置你想检测的类别
with open('/home/aistudio/data/oil/label_list.txt', 'w') as f:for text in label:f.write(text+'\n')
最终生成的数据集文件夹目录为

使用x2coco.py将voc格式的数据集转换成coco数据集 只需要将这四个参数指定成上面生成的标签文件即可
voc_anno_dir 总的标注文件
voc_anno_list 训练数据集文件列表
voc_label_list 标签文件
voc_out_name 输出的coco文件路径
!python tools/x2coco.py \--dataset_type voc \--voc_anno_dir /home/aistudio/data/oil/Annotations \--voc_anno_list /home/aistudio/data/oil/train.txt \--voc_label_list /home/aistudio/data/oil/label_list.txt \--voc_out_name /home/aistudio/data/oil/train.json
!python tools/x2coco.py \--dataset_type voc \--voc_anno_dir /home/aistudio/data/oil/Annotations \--voc_anno_list /home/aistudio/data/oil/val.txt \--voc_label_list /home/aistudio/data/oil/label_list.txt \--voc_out_name /home/aistudio/data/oil/valid.json
!mkdir oil
%cd oil
!mkdir images &&mkdir annotations
!mv /home/aistudio/data/oil/train.json /home/aistudio/work/PaddleDetection/oil/annotations
!mv /home/aistudio/data/oil/valid.json /home/aistudio/work/PaddleDetection/oil/annotations
!cp -r /home/aistudio/data/oil/JPEGImages/* /home/aistudio/work/PaddleDetection/oil/images/
%cd ..
这个是标准的COCO数据集格式

2.3 训练模型
在这就可以切换环境了,切换到V10032GB的,切记,切记,切记,不要在项目里切换,也有可能是我电脑太辣鸡了,切换不过来,我的失败了很多次,先停止环境再重新启动。

首先查看PP-YOLOE使用的配置文件PaddleDetection/configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml 可以看到依赖的相关配置文件如下图所示:
注意:这里将预训练权重换成coco数据集上的预训练权重,更多预训练权重
点击链接进入选择配置文件的config找到预训练权重,将其复制进去即可。(就一行)


具体的配置文件修改情况以及说明情况,请转至基于PaddleDetection的绝缘子的缺陷检测查看
另外,值得注意的是,coco_detection.yml的配置修改(位置是PaddleDetection/configs/datasets/coco_detection.yml),否则加载数据集失败,无法训练。

然后,输入程序开始训练。建议用第二条指令,可以边训练边评估,开启可视化。
#** 注意: ** 使用默认配置训练需要设置--amp以避免显存溢出.
#!python tools/train.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml --amp
#或者运行下面这条指令,边训练边评估,开启可视化
!python tools/train.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml --amp --eval --use_vdl=True --vdl_log_dir="output"
训练完是这样的。

3.4 评估模型
python -u work/PaddleDetection/tools/eval.py -c work/PaddleDetection/configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml \
-o weights=/home/aistudio/output/ppyoloe_crn_l_300e_coco/best_model.pdparams
点击可视化–>设置logdir下面的添加,找到work/PaddleDetection/output,点击确定即可

之后点击启动VisualDL服务,再点击进入VisualDL,在弹出网页的左上角点击标量数据。

就可以看到各种可视化的图,起会跟着训练的过程随时更新。



相关文章:
飞桨平台搭建PP-YOLOE模型
一、创建项目 此博客仅是运行PP-YOLOE源码,这里以变压器渗漏数据集为例COCO数据集太大了,跑不动,V100训练预估计得7天左右,即便是A100也得4天半,变压器渗漏油数据集跑一个小时左右,还可以接受,…...
Js重点内容
一,什么是js javascript是运行在客户端(浏览器,可预览)的编程语言 二,主要的功能 用来给静态页(html网页)增加一些动态功能(比如轮播图、tab切换) 三,应用…...
图形化ping工具gping
一、介绍 gping能够以折线图的方式,实时展示 ping 的结果,支持 Windows、Linux 和 macOS 操作系统。并且支持多个目标同时Ping同时展示折线图方便对比。下面扩展一下ICMP及ICMP隧道。 ICMP消息结构: ICMP消息是由一个类型字段、一个代码字段、…...
快速安装虚拟机centos7.5
vbox 快速导入安装centos7.5 环境准备 vbox安装(下载地址) ova镜像(下载地址)(默认是192.168.56.10 加nat网卡) 链接:https://pan.baidu.com/s/164Iprh_80HCQmKCU6V-RTw 提取码:if…...
2023.11.4 Idea 配置国内 Maven 源
目录 配置国内 Maven 源 重新下载 jar 包 配置国内 Maven 源 <mirror><id>alimaven</id><name>aliyun maven</name><url>http://maven.aliyun.com/nexus/content/groups/public/</url><mirrorOf>central</mirrorOf> …...
DAY11 字符串处理函数
1.测字符串长度函数 头文件: #include <string.h> 函数定义: size_t strlen(const char *s); 函数功能: 测字符指针 s 指向的字符串中字符的个数,不包括 ’\0’ void fun01() {char *num "hello";int len …...
Web自动化测试 —— PageObject设计模式!
一、page object 模式简介 1.1、传统 UI 自动化的问题 无法适应 UI 频繁变化无法清晰表达业务用例场景大量的样板代码 driver/find/click 二、page object 设计原则 2.1、POM 模式的优势 降低 UI 变化导致的测试用例脆弱性问题让用例清晰明朗,与具体实现无关 2.…...
七月论文审稿GPT第2版:从Meta Nougat、GPT4审稿到Mistral、LongLora
前言 如此前这篇文章《学术论文GPT的源码解读与微调:从chatpaper、gpt_academic到七月论文审稿GPT》中的第三部分所述,对于论文的摘要/总结、对话、翻译、语法检查而言,市面上的学术论文GPT的效果虽暂未有多好,可至少还过得去&am…...
Unreal Engine 学习笔记 (1)—— 日夜交替
1.创建关卡 文件新建关卡空白关卡保存关卡(命名为NewWorld) 2.创建蓝图类 创建蓝图类(继承自Actor) 命名为SunAndMoon 3.编辑SunAndMoon蓝图类 添加SkyAtmosphere添加SkyLight添加DirectionalLight将DirectionalLight重命名为…...
leetcode:189. 轮转数组(python3解法)
难度:中等 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4]解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,3,4,5] 向右轮转 3…...
基于PHP + MySQL实现的文章内容管理系统源码+数据库,采用前后端分离的模板和标签化方式
文章内容管理系统 dc-article是一个通用的文章内容管理系统,基于开源的caozha-admin开发,采用前后端分离的模板和标签化方式,支持文章内容管理、栏目分类管理、评论管理、友情链接管理、碎片管理、远程图片获取器等功能。可以使用本系统很轻…...
这可能是全网最晚的低代码技术总结
低代码的发展一向结伴着质疑前行,一些人认为低代码平台限制了开发人员的创新能力,使得开发过程变得过于简单,缺乏深度的定制和灵活性。他们担心,低代码平台可能只适合于简单的应用程序,无法满足复杂业务需求。另一面&a…...
leetcode2054
leetcode 2054 #include <iostream> #include <vector> #include <tuple> #include <algorithm>using namespace std;struct Event {// 时间戳int ts;// op 0 表示左边界,op 1 表示右边界int op;int val;Event(int _ts, int _op, int _v…...
c面向对象编码风格(上)
面向对象和面向过程的基本概念 面向对象和面向过程是两种不同的编程范式,它们在软件开发中用于组织和设计代码的方式。 面向过程编程(Procedural Programming)是一种以过程(函数、方法)为核心的编程方式。在面向过程…...
【星海出品】VUE(六)
插槽Slots 传递属性 attribute App,vue <script> import SlotsBase from "./components/SlotsBase.vue" import SlotsTow from "./components/SlotsTow.vue" export default {components:{SlotsBase,SlotsTow},data(){return{message: "父集 m…...
华为政企闪存存储产品集
产品类型产品型号产品说明 maintainProductOceanStor Dorado 2000 SAS 128GB华为OceanStor Dorado 2000是一款简单、可靠、绿色的全闪存存储系统,极简部署、智能运维、轻量便捷,功能齐全,广泛适用于虚拟化、数据库、办公自动化、分支机构等…...
【项目源码】反编译Java字节码生成源码
【项目源码】反编译Java字节码生成源码 文章目录 【项目源码】反编译Java字节码生成源码参考资料一、什么是反编译?二、反编译Java字节码文件1. (不一定有效) 使用IDEA提供的插件 - Java Bytecode Decomplier2. (推荐)…...
技术分享 | 测试人员必须掌握的测试用例
测试用例(Test Case)是为特定的目的而设计的一组测试输入、执行条件和预期结果的文档。它的作用其实就是为了测试是否满足某个特定需求。测试用例是指导测试工作进行的依据。 测试用例的组成 标准的测试用例通常由以下几个模块组成: 用例编…...
Rabbit的高可用机制
RabbitMQ是一个消息中间件,提供了多种高可用机制来确保系统在出现故障时仍能保持可用性。以下是RabbitMQ的一些高可用机制: 镜像队列(Mirrored Queues): 作用: 镜像队列可以在集群中复制队列的消息到多个节…...
函数调用指令, 返回机制分析(x86_64)
预备 #include <stdio.h>int addDetail(int a, int b) {return a b; }int add(int a, int b) {int c;c addDetail(a, b);return c; }int main(int argc, char *argv[]) {int sum;sum add(3, 5);printf("sum %d\n", sum);return 0; }汇编 main add addDeta…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...
群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...
go 里面的指针
指针 在 Go 中,指针(pointer)是一个变量的内存地址,就像 C 语言那样: a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10,通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...
