当前位置: 首页 > news >正文

K8s:部署 CNI 网络组件+k8s 多master集群部署+负载均衡及Dashboard k8s仪表盘图像化展示管理

目录

1 部署 CNI 网络组件

1.1 部署 flannel

1.2 部署 Calico

1.3 部署 CoreDNS

2 负载均衡部署

3 部署 Dashboard


1 部署 CNI 网络组件

1.1 部署 flannel

K8S 中 Pod 网络通信:

●Pod 内容器与容器之间的通信 在同一个 Pod 内的容器(Pod 内的容器是不会跨宿主机的)共享同一个网络命令空间,相当于它们在同一台机器上一样,可以用 localhost 地址访问彼此的端口。

●同一个 Node 内 Pod 之间的通信 每个 Pod 都有一个真实的全局 IP 地址,同一个 Node 内的不同 Pod 之间可以直接采用对方 Pod 的 IP 地址进行通信,Pod1 与 Pod2 都是通过 Veth 连接到同一个 docker0 网桥,网段相同,所以它们之间可以直接通信。

●不同 Node 上 Pod 之间的通信 Pod 地址与 docker0 在同一网段,docker0 网段与宿主机网卡是两个不同的网段,且不同 Node 之间的通信只能通过宿主机的物理网卡进行。 要想实现不同 Node 上 Pod 之间的通信,就必须想办法通过主机的物理网卡 IP 地址进行寻址和通信。因此要满足两个条件:Pod 的 IP 不能冲突;将 Pod 的 IP 和所在的 Node 的 IP 关联起来,通过这个关联让不同 Node 上 Pod 之间直接通过内网 IP 地址通信。

Overlay Network: 叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路隧道连接起来(类似于VPN)。

VXLAN: 将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址。

Flannel: Flannel 的功能是让集群中的不同节点主机创建的 Docker 容器都具有全集群唯一的虚拟 IP 地址。 Flannel 是 Overlay 网络的一种,也是将 TCP 源数据包封装在另一种网络包里面进行路由转发和通信,目前支持 udp、vxlan、 host-GW 3种数据转发方式。

#Flannel udp 模式的工作原理: 数据从 node01 上 Pod 的源容器中发出后,经由所在主机的 docker0 虚拟网卡转发到 flannel.1 虚拟网卡,flanneld 服务监听在 flannel.1 虚拟网卡的另外一端。 Flannel 通过 Etcd 服务维护了一张节点间的路由表。源主机 node01 的 flanneld 服务将原本的数据内容封装到 UDP 中后根据自己的路由表通过物理网卡投递给目的节点 node02 的 flanneld 服务,数据到达以后被解包,然后直接进入目的节点的 flannel.1 虚拟网卡,之后被转发到目的主机的 docker0 虚拟网卡,最后就像本机容器通信一样由 docker0 转发到目标容器。

#ETCD 之 Flannel 提供说明: 存储管理Flannel可分配的IP地址段资源 监控 ETCD 中每个 Pod 的实际地址,并在内存中建立维护 Pod 节点路由表

由于 udp 模式是在用户态做转发,会多一次报文隧道封装,因此性能上会比在内核态做转发的 vxlan 模式差。

#vxlan 模式:

vxlan 是一种overlay(虚拟隧道通信)技术,通过三层网络搭建虚拟的二层网络,跟 udp 模式具体实现不太一样:

(1)udp模式是在用户态实现的,数据会先经过tun网卡,到应用程序,应用程序再做隧道封装,再进一次内核协议栈,而vxlan是在内核当中实现的,只经过一次协议栈,在协议栈内就把vxlan包组装好

(2)udp模式的tun网卡是三层转发,使用tun是在物理网络之上构建三层网络,属于ip in udp,vxlan模式是二层实现, overlay是二层帧,属于mac in udp

(3)vxlan由于采用mac in udp的方式,所以实现起来会涉及mac地址学习,arp广播等二层知识,udp模式主要关注路由

#Flannel vxlan 模式的工作原理: vxlan在内核当中实现,当数据包使用vxlan设备发送数据时,会打上vlxan的头部信息,在发送出去,对端解包,flannel.1网卡把原始报文发送到目的服务器。

//在 node01 节点上操作

#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中

cd /opt/
docker load -i flannel.tar
docker load -i flannel-cni-plugin.tarmkdir /opt/cni/bin -p
tar zxvf cni-plugins-linux-amd64-v1.3.0.tgz -C /opt/cni/bin

//在 master01 节点上操作

#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络

cd /opt/k8s
kubectl apply -f kube-flannel.yml kubectl get pods -A
NAMESPACE      NAME                    READY   STATUS             RESTARTS   AGE
kube-flannel   kube-flannel-ds-g7thg   1/1     Running            0          48mkubectl get nodes
NAME             STATUS   ROLES    AGE     VERSION
192.168.30.101   Ready    <none>   4h16m   v1.20.15

1.2 部署 Calico

#k8s 组网方案对比:

●flannel方案 需要在每个节点上把发向容器的数据包进行封装后,再用隧道将封装后的数据包发送到运行着目标Pod的node节点上。目标node节点再负责去掉封装,将去除封装的数据包发送到目标Pod上。数据通信性能则大受影响。

●calico方案 Calico不使用隧道或NAT来实现转发,而是把Host当作Internet中的路由器,使用BGP同步路由,并使用iptables来做安全访问策略,完成跨Host转发来。

#Calico 主要由三个部分组成:

Calico CNI插件:主要负责与kubernetes对接,供kubelet调用使用。

Felix:负责维护宿主机上的路由规则、FIB转发信息库等。

BIRD:负责分发路由规则,类似路由器。

Confd:配置管理组件。

#Calico 工作原理: Calico 是通过路由表来维护每个 pod 的通信。Calico 的 CNI 插件会为每个容器设置一个 veth pair 设备, 然后把另一端接入到宿主机网络空间,由于没有网桥,CNI 插件还需要在宿主机上为每个容器的 veth pair 设备配置一条路由规则,用于接收传入的IP包。 有了这样的 veth pair 设备以后,容器发出的IP包就会通过 veth pair 设备到达宿主机,然后宿主机根据路由规则的下一跳地址, 发送给正确的网关,然后到达目标宿主机,再到达目标容器。 这些路由规则都是 Felix 维护配置的,而路由信息则是 Calico BIRD 组件基于 BGP 分发而来。calico 实际上是将集群里所有的节点都当做边界路由器来处理,他们一起组成了一个全互联的网络,彼此之间通过 BGP 交换路由,这些节点我们叫做 BGP Peer。

目前比较常用的时flannel和calico,flannel的功能比较简单,不具备复杂的网络策略配置能力,calico是比较出色的网络管理插件,但具备复杂网络配置能力的同时,往往意味着本身的配置比较复杂,所以相对而言,比较小而简单的集群使用flannel,考虑到日后扩容,未来网络可能需要加入更多设备,配置更多网络策略,则使用calico更好。

//在 master01 节点上操作

#上传 calico.yaml 文件到 /opt/k8s 目录中,部署 CNI 网络

cd /opt/k8s
vim calico.yaml
#修改里面定义Pod网络(CALICO_IPV4POOL_CIDR),与前面kube-controller-manager配置文件指定的cluster-cidr网段一样- name: CALICO_IPV4POOL_CIDRvalue: "10.244.0.0/16"kubectl apply -f calico.yamlkubectl get pods -n kube-system
NAME                                       READY   STATUS    RESTARTS   AGE
calico-kube-controllers-659bd7879c-w498v   1/1     Running   0          44m
calico-node-h2hzh                          1/1     Running   12         44m
calico-node-jphcv                          1/1     Running   0          44m

#等 Calico Pod 都 Running,节点也会准备就绪

kubectl get nodes

---------- node02 节点部署 ----------

//在 node01 节点上操作

cd /opt/
scp kubelet.sh proxy.sh root@192.168.30.102:/opt/
scp -r /opt/cni root@192.168.30.102:/opt/

//在 node02 节点上操作

#启动kubelet服务

cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.30.102

//在 master01 节点上操作

kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   10s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

#通过 CSR 请求

kubectl certificate approve node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   23s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

#加载 ipvs 模块

for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done#使用proxy.sh脚本启动proxy服务
cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.30.102

#查看群集中的节点状态

kubectl get nodes

1.3 部署 CoreDNS

//在所有 node 节点上操作 #上传 coredns.tar 到 /opt 目录中

cd /opt
docker load -i coredns.tar

//在 master01 节点上操作

#上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS

cd /opt/k8s
kubectl apply -f coredns.yamlkubectl get pods -n kube-system 
NAME                          READY   STATUS    RESTARTS   AGE
coredns-5ffbfd976d-j6shb      1/1     Running   0          32s

#DNS 解析测试

kubectl run -it --rm dns-test2 --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
/ # nslookup kubernetes
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.localName:      kubernetes
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local

---------- master02 节点部署 ----------

//从 master01 节点上拷贝证书文件、各master组件的配置文件和服务管理文件到 master02 节点

scp -r /opt/etcd/ root@192.168.30.115:/opt/
scp -r /opt/kubernetes/ root@192.168.30.115:/opt
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@192.168.30.115:/usr/lib/systemd/system/

//修改配置文件kube-apiserver中的IP

vim /opt/kubernetes/cfg/kube-apiserver
KUBE_APISERVER_OPTS="--logtostderr=true \
--v=4 \
--etcd-servers=https://192.168.80.10:2379,https://192.168.80.11:2379,https://192.168.80.12:2379 \
--bind-address=192.168.30.115 \				#修改
--secure-port=6443 \
--advertise-address=192.168.30.115 \			#修改
......

//在 master02 节点上启动各服务并设置开机自启

systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service

//查看node节点状态

ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get nodes
kubectl get nodes -o wide			#-o=wide:输出额外信息;对于Pod,将输出Pod所在的Node名
//此时在master02节点查到的node节点状态仅是从etcd查询到的信息,而此时node节点实际上并未与master02节点建立通信连接,因此需要使用一个VIP把node节点与master节点都关联起来

2 负载均衡部署

//配置load balancer集群双机热备负载均衡(nginx实现负载均衡,keepalived实现双机热备)

在lb01、lb02节点上操作

//配置nginx的官方在线yum源,配置本地nginx的yum源

cat > /etc/yum.repos.d/nginx.repo << 'EOF'
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
EOFyum install nginx -y

//修改nginx配置文件,配置四层反向代理负载均衡,指定k8s群集2台master的节点ip和6443端口

vim /etc/nginx/nginx.conf
events {worker_connections  1024;
}#添加
stream {log_format  main  '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';access_log  /var/log/nginx/k8s-access.log  main;upstream k8s-apiserver {server 192.168.30.105:6443;server 192.168.30.115:6443;server 192.168.30.106:6443;
}
server {listen 6443;proxy_pass k8s-apiserver;
}}http {
......

//检查配置文件语法

nginx -t   

//启动nginx服务,查看已监听6443端口

systemctl start nginx
systemctl enable nginx
netstat -natp | grep nginx 

//部署keepalived服务

yum install keepalived -y

//修改keepalived配置文件

vim /etc/keepalived/keepalived.conf
! Configuration File for keepalivedglobal_defs {接收邮件地址notification_email {acassen@firewall.locfailover@firewall.locsysadmin@firewall.loc}邮件发送地址notification_email_from Alexandre.Cassen@firewall.locsmtp_server 127.0.0.1smtp_connect_timeout 30router_id NGINX_MASTER	#lb01节点的为 NGINX_MASTER,lb02节点的为 NGINX_BACKUP
}#添加一个周期性执行的脚本
vrrp_script check_nginx {script "/etc/nginx/check_nginx.sh"	#指定检查nginx存活的脚本路径
}vrrp_instance VI_1 {state MASTER			#lb01节点的为 MASTER,lb02节点的为 BACKUPinterface ens33			#指定网卡名称 ens33virtual_router_id 51	#指定vrid,两个节点要一致priority 100			#lb01节点的为 100,lb02节点的为 90advert_int 1authentication {auth_type PASSauth_pass 1111}virtual_ipaddress {192.168.30.188/24	#指定 VIP}track_script {check_nginx			#指定vrrp_script配置的脚本}
}

//创建nginx状态检查脚本

vim /etc/nginx/check_nginx.sh
#!/bin/bash
#egrep -cv "grep|$$" 用于过滤掉包含grep 或者 $$ 表示的当前Shell进程ID
count=$(ps -ef | grep nginx | egrep -cv "grep|$$")if [ "$count" -eq 0 ];thensystemctl stop keepalived
fichmod +x /etc/nginx/check_nginx.sh

//启动keepalived服务(一定要先启动了nginx服务,再启动keepalived服务)

systemctl start keepalived
systemctl enable keepalived
ip a				#查看VIP是否生成

//修改node节点上的bootstrap.kubeconfig,kubelet.kubeconfig配置文件为VIP

cd /opt/kubernetes/cfg/
vim bootstrap.kubeconfig 
server: https://192.168.30.188:6443

vim kubelet.kubeconfig
server: https://192.168.30.188:6443

vim kube-proxy.kubeconfig
server: https://192.168.30.188:6443

//重启kubelet和kube-proxy服务

systemctl restart kubelet.service 
systemctl restart kube-proxy.service

//在 lb01 上查看 nginx 和 node 、 master 节点的连接状态

netstat -natp | grep nginx
tcp        0      0 0.0.0.0:6443            0.0.0.0:*               LISTEN      99160/nginx: master 
tcp        0      0 0.0.0.0:80              0.0.0.0:*               LISTEN      99160/nginx: master 
tcp        0      0 192.168.30.107:35038    192.168.30.105:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56352    192.168.30.115:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:35026    192.168.30.105:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36606    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36560    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56358    192.168.30.115:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56340    192.168.30.115:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46622    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46602    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46604    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56304    192.168.30.106:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36624    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:35032    192.168.30.105:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46668    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:35020    192.168.30.105:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46666    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56346    192.168.30.115:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36574    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36558    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56298    192.168.30.106:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56286    192.168.30.106:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36602    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56292    192.168.30.106:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46660    ESTABLISHED 99163/nginx: worker

在 master01 节点上操作

//测试创建pod

kubectl run nginx --image=nginx

//查看Pod的状态信息

kubectl get pods
NAME    READY   STATUS              RESTARTS   AGE
nginx   0/1     ContainerCreating   0          33s   #正在创建中kubectl get pods
NAME    READY   STATUS    RESTARTS   AGE
nginx   1/1     Running   0          27s          #创建完成,运行中kubectl get pods -o wide
NAME    READY   STATUS    RESTARTS   AGE   IP             NODE             NOMINATED NODE   READINESS GATES
nginx   1/1     Running   0          77s   172.16.18.65   192.168.30.102   <none>           <none>
//READY为1/1,表示这个Pod中有1个容器

//在对应网段的node节点上操作,可以直接使用浏览器或者curl命令访问

curl 172.17.36.2

//这时在master01节点上查看nginx日志,发现没有权限查看

kubectl logs nginx-dbddb74b8-nf9sk

3 部署 Dashboard

Dashboard 介绍

仪表板是基于Web的Kubernetes用户界面。您可以使用仪表板将容器化应用程序部署到Kubernetes集群,对容器化应用程序进行故障排除,并管理集群本身及其伴随资源。您可以使用仪表板来概述群集上运行的应用程序,以及创建或修改单个Kubernetes资源(例如部署,作业,守护进程等)。例如,您可以使用部署向导扩展部署,启动滚动更新,重新启动Pod或部署新应用程序。仪表板还提供有关群集中Kubernetes资源状态以及可能发生的任何错误的信息。

//在 master01 节点上操作 #上传 recommended.yaml 文件到 /opt/k8s 目录中

cd /opt/k8s
vim recommended.yaml

#默认Dashboard只能集群内部访问,修改Service为NodePort类型,暴露到外部:

kind: Service
apiVersion: v1
metadata:labels:k8s-app: kubernetes-dashboardname: kubernetes-dashboardnamespace: kubernetes-dashboard
spec:ports:- port: 443targetPort: 8443nodePort: 30001     #添加type: NodePort          #添加selector:k8s-app: kubernetes-dashboardkubectl apply -f recommended.yaml

#创建service account并绑定默认cluster-admin管理员集群角色

kubectl create serviceaccount dashboard-admin -n kube-system
kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin
kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')

#使用输出的token登录Dashboard https://NodeIP:30001

相关文章:

K8s:部署 CNI 网络组件+k8s 多master集群部署+负载均衡及Dashboard k8s仪表盘图像化展示管理

目录 1 部署 CNI 网络组件 1.1 部署 flannel 1.2 部署 Calico 1.3 部署 CoreDNS 2 负载均衡部署 3 部署 Dashboard 1 部署 CNI 网络组件 1.1 部署 flannel K8S 中 Pod 网络通信&#xff1a; ●Pod 内容器与容器之间的通信 在同一个 Pod 内的容器&#xff08;Pod 内的容…...

「直播回放」使用 PLC + OPC + TDengine,快速搭建烟草生产监测系统

在烟草工业场景里&#xff0c;多数设备的自动控制都是通过 PLC 可编程逻辑控制器来实现的&#xff0c;PLC 再将采集的数据汇聚至 OPC 服务器。传统的 PI System、实时数据库、组态软件等与 OPC 相连&#xff0c;提供分析、可视化、报警等功能&#xff0c;这类系统存在一些问题&…...

私域流量搭建与运营,技巧全攻略!

2023年是比拼运营深度和服务效率的一年&#xff0c;用户对于体验的期望值将持续增长&#xff0c;企业需提供无缝的客户体验&#xff0c;以推动增长、保障收入、确保客户忠诚度。在疫情新常态下&#xff0c;企业已构建起APP、小程序等一系列线上触点矩阵&#xff0c;而各个触点之…...

AWS SAP-C02教程0--课程概述

SAP是亚马逊云的解决方案架构师专业级认证&#xff0c;关于本课程&#xff0c;我会简述已下3点&#xff1a; 在本课程中按照自己的分类讲述考试相关的AWS产品&#xff0c;特别会注明每个产品在考试中可能出现的考点会对一些解决方案做对比&#xff0c;通过一些对比给出不同场景…...

RFC使用与WebService

RFC连接 CSDN RFC中引用类型组 http://t.csdnimg.cn/wQWAYhttp://t.csdnimg.cn/wQWAY 远程目标系统维护SM59 这里的类型指的是目标系统的系统类型(目标系统即rfc函数存在的系统). 类型2&#xff08;R/2连接&#xff09;&#xff0c;只需给出主机名&#xff0c;所有通信信息…...

打造全球化电商平台,多语言商城系统助您开拓海外市场

全球化进程的加速&#xff0c;越来越多的企业开始将目光投向海外市场。然而&#xff0c;语言和文化差异成为了企业面临的一大挑战。为了帮助企业顺利拓展海外业务&#xff0c;多语言商城系统应运而生。作为一种功能强大的电子商务平台&#xff0c;多语言商城系统具备以下关键功…...

【滑动窗口】篮里到底能装 “几个水果” 呢?

Problem: 904. 水果成篮 文章目录 题目分析算法原理分析暴力枚举 哈希表滑动窗口优化数组再度优化 复杂度Code 题目分析 首先我们来分析一下本题的思路 首先我们通过题目的描述来理解一下其要表达的含义&#xff0c;题目给到我们一个fruit数组&#xff0c;里面存放的是每棵树上…...

newstarctf2022week2

Word-For-You(2 Gen) 和week1 的界面一样不过当时我写题的时候出了个小插曲 连接 MySQL 失败: Access denied for user rootlocalhost 这句话印在了背景&#xff0c;后来再进就没了&#xff0c;我猜测是报错注入 想办法传参 可以看到一个name2,试着传参 发现有回显三个字段…...

集群调度-01

目录 1、调度约束 2、Pod 是 Kubernetes 的基础单元&#xff0c;Pod 启动典型创建过程如下 2.1 工作机制 **** 2.2 调度过程 *** 2.3 Predicate 有一系列的常见的算法可以使用&#xff1a; ** 2.4 指定调度节点 1、调度约束 Kubernetes 是通过 List-Watch **…...

【软件工程】金管局计算机岗位——软件测试的分类(⭐⭐⭐⭐)

软件工程 软件测试的分类从是否关心软件内部结构和具体实现的角度划&#xff08;⭐⭐⭐⭐&#xff09;从是否执行代码角度划分&#xff08;⭐⭐&#xff09;从软件开发的过程按阶段划分&#xff08;⭐⭐⭐⭐&#xff09; 软件测试的分类 考点导读&#xff1a; 软件测试是软件工…...

Halcon WPF 开发学习笔记(1):Hello World小程序

文章目录 文章专栏视频链接Hello World训练图片训练目的 开始训练图像预处理导入图像三通道处理调用算子通道选取 滤波什么是好的滤波 增加对比度 区域选取阈值处理算子参数选择运行结果(红色为选择区域) 区域分割运行结果 特征筛选参数代码第二次&#xff0c;面积筛选 画选中十…...

pix2tex - LaTeX OCR 安装使用记录

系列文章目录 文章目录 系列文章目录前言一、安装二、使用三、少侠请留步&#xff0c;点赞、收藏、关注 前言 项目地址&#xff1a;这儿 一、安装 版本要求 Python: 3.7 PyTorch: >1.7.1 安装&#xff1a;pip install "pix2tex[gui]" 注意&#xff1a;Pyside6…...

前端框架Vue学习 ——(四)Axios

文章目录 Axios 介绍Axios 入门Vue项目中使用 Axios Axios 介绍 介绍: Axios 对原生的 Ajax 进行了封装&#xff0c;简化书写&#xff0c;快速开发。&#xff08;异步请求&#xff09; 官网: https://www.axios-http.cn/ 官网介绍&#xff1a;Axios 是一个基于 promise 网络请…...

将json数据导入到ES集群——解决方案对比填坑日记

需求 将写好的json数据。导入到es集群 数据说明 文件JSON数据&#xff0c;一行一个JSON。 {"id":"d2716ae8fba4e026c4bd9445c3f49e2c","lang":"zh","title":"吉美旅馆","content":"吉美..."}…...

C语言----------#pragma预处理分析

一、#pragma预处理分析 1、#pragma是编译器指示字&#xff0c;用于指示编译器完成一些特定的动作&#xff1b; 2、#pragma所定义的很多指示字是编译器和操作系统特有的&#xff1b; 3、#pragma在不同的编译器间是不可移植的&#xff1a; 预处理器将忽略它不认识的#pragma指…...

数据库中的时间django转换成None

原因 数据库中使用的是datetime[64] 的格式。精确的毫秒了。django默认的使用的是datetime.datetime.fromisoformat转换的。转换不了 使用原生查找 for raw in StockNominate.objects.raw("select id,code,strftime(%Y-%m-%d,date) as date from table_name; "):pr…...

八种流行的网络协议

1、HTTP&#xff08;超文本传输协议&#xff09;&#xff0c;HTTP 是一种用于获取 HTML 文档等资源的协议。它是 Web 上任何数据交换的基础&#xff0c;是一种客户端 - 服务器协议。 2、HTTP/3&#xff0c;HTTP/3 是 HTTP 的下一个重大修订版。它运行在 QUIC 上&#xff0c;QU…...

Qwt QwtKnob绘制旋钮

1.简介 QwtKnob是Qwt库中的一个类&#xff0c;用于绘制一个旋钮样式的仪表盘。它继承QwtAbstractSlider类&#xff0c;提供了一些额外的功能和样式&#xff0c;用于旋转和选择值。 以下是类继承关系&#xff1a; 2.常用方法 旋钮&#xff08;Knob&#xff09;相关的属性和方法…...

docker部署elk

目录 前言 一、创建程序工作路径 二、创建私有网络 三、部署elasticsearch 1.先搜速后下载 2.创建一个基础的容器&#xff08;此步骤是为了拷贝容器里的文件&#xff09; 3.拷贝文件到宿主机 3.1进入容器 3.2拷贝并授权 3.3删除基础容器 4.创建容器 5.访问9200测试 …...

护网蓝队初级面试题摘录(下)

小王学习录 1.设备误报如何处理&#xff1f;2.讲一下TOP10都有哪些3.SQL注入的原理和漏洞产生的原因&#xff1f;4.SQL注入的类型盲注类型&#xff1a; 5.简单讲一下防范SQL注入的方法和原理6.SQL注入有哪些绕过姿势&#xff1f;7.SQL注入攻击有哪些危害&#xff1f;6.XSS&…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

全面解析数据库:从基础概念到前沿应用​

在数字化时代&#xff0c;数据已成为企业和社会发展的核心资产&#xff0c;而数据库作为存储、管理和处理数据的关键工具&#xff0c;在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理&#xff0c;到社交网络的用户数据存储&#xff0c;再到金融行业的交易记录处理&a…...

6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙

Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...