当前位置: 首页 > news >正文

noip模拟赛多校第八场 T3 遥控机器人 (最短路 + 技巧拆点)

题面

在这里插入图片描述

简要题意:
        给你一个 n n n 个点 m m m 条边的图。边 i i i 有颜色 c i c_i ci。你可以选择一些边改变它们的颜色成为区间 [ 1 , m ] [1, m] [1,m] 中的任意颜色,改变一条边 i i i 一次的代价是 w i w_i wi。询问你能否在一些改变操作后使得可以从 1 1 1 号点,每次只经过当前点的 特殊边 到达 n n n。特殊边的定义是 对于当前点而言,特殊边的颜色在该点所有出边中有且仅出现一条。 如果可以,输出最小代价。否则输出 − 1 -1 1

分析:

        凭感觉是一道最短路的题。

        首先有一个性质:因为颜色的区间与边数相同,所以如果要改变一条边,那么可以把它变成一个任何别的边都不会再变成的颜色。换言之, 如果要花费代价改变某一条边的颜色,那么可以把它变成无色,并且这样是最优的

        接下来我们考虑如果一条边 ( u , v ) (u, v) (u,v) 的颜色是 c c c,花费是 w w w。我们从 u u u v v v 经过它花费代价有几种情况:

        1. u u u 的出边中是 c c c 颜色的只有一条,那么代价是 0 0 0

        2. u u u 的出边中 c c c 颜色的边有多条,改变这条边的颜色至无色,花费是 w w w

        3. u u u 的出边中 c c c 颜色的边有多条,改变不改变它的颜色,改变其它边的颜色至无色。
            花费是 v a l u , c − w val_{u, c} - w valu,cw v a l u , c val_{u, c} valu,c 代表所有 u u u 的出边中颜色是 c c c 的边的代价之和。

        不难发现,情况 1 1 1 可以归到情况 3 3 3 中。

        我们考虑把这两种代价看做两种边权跑最短路会有什么问题:

        如果按照情况 3 3 3 u u u v v v,我们考虑会不会存在一个问题:按照情况 3 3 3 我们需要把其它颜色也为 c c c 的边都改成无色,那么把它变成无色但是却不记录会不会影响后面答案的计算呢?
)

        蓝色点表示最优路径的点,红色的边表示情况 3 3 3 中染成无色的边,它们的颜色是 c c c。黑色的边表示最优路径的边。那么如果出现上图的情况(从 5 5 5 号点走到 1 1 1 号点),那么 2 2 2 号点到 1 1 1 号点似乎是不需要花费的,因为在从 4 4 4 号点到 3 3 3 号点的时候就把那条颜色为 c c c 的边染成了无色。但是我们按照上面的规则进行的话,如果从 2 2 2 3 3 3 还使用情况 3 3 3,显然会多算一个代价。

        但是深入思考一下,这种情况不会发生。因为这样的路径一定不是最优路径。如果按照上图的走法,那么 ( 2 , 4 ) (2,4) (2,4) ( 6 , 4 ) (6, 4) (6,4) ( 4 , 7 ) (4, 7) (4,7) 的代价都会被算。实际上如果我们直接选择路径 5 → 4 → 2 → 1 5 \to 4 \to 2 \to 1 5421,并且 ( 4 , 2 ) (4, 2) (4,2) 使用情况 2 2 2 ( 2 , 1 ) (2, 1) (2,1) 使用情况 3 3 3 肯定更加优秀。

        这也就意味着: 如果我们能够通过某种方式处理好情况 2 2 2 带来的影响(即把边染成无色的影响),那么按照上面的规则跑最短路就是对的

        如果按照情况 2 2 2 经过一条颜色为 c c c 的边 从 u u u v v v,那么 ( u , v ) (u, v) (u,v) 这条边颜色的改变可能会影响从 v v v k k k 经过一条颜色为 c c c 按照情况 3 3 3 所花费的代价。根据这个问题,我们考虑 拆点

        有一个很暴力的想法是我们把每一个点拆成 m + 1 m + 1 m+1 个点:若有三个点 a a a, b b b , c c c a a a b b b 经过一条颜色为 x x x 的边,当使用情况 2 2 2 的时候,可以从 a a a 走向 b x b_x bx,代价为 0 0 0 b x b_x bx必须继续沿着颜色x使用情况 3 3 3 走向其他点。每一个点的 0 0 0 状态表示 没有限制。这样我们就解决了维护信息的问题。但是复杂度好像有点问题。

        我们考虑实际上一个点没有必要开 m m m 个点,只需要对每个点开其存在的颜色数个点就行了。一条边能够提供给两个点分别提供 1 1 1 个点,所以总点数是 2 m + n 2m + n 2m+n。然后建图跑最短路即可。时间复杂度 O ( ( n + m ) l o g 2 ( n + m ) ) O((n + m)log_2(n + m)) O((n+m)log2(n+m))。常数有亿点大。

CODE:

#include<bits/stdc++.h>//拆点   把点的状态拆一下 
using namespace std;
const int N = 1e5 + 10;
const int M = 2e5 + 10;
const int T = 2 * N + M * 2;
typedef pair< int, int > PII;
typedef long long LL;
inline int read(){int x = 0, f = 1; char c = getchar();while(!isdigit(c)){if(c == '-') f = -1; c = getchar();}while(isdigit(c)){x = (x << 1) + (x << 3) + (c ^ 48); c = getchar();}return x * f;
}
int u, v, c;
int n, m, head[T], ut[M], vt[M], ct[M], tot, len;//最多T个点
bool vis[T];
LL wt[M], dis[T], res, w; 
map< PII, int > rk;
map< PII, LL > val;
struct edge{int v, last;LL w;
}E[M * 8 + 10000];
void add(int u, int v, LL w){E[++len].v = v;E[len].last = head[u];E[len].w = w;head[u] = len;
}
struct state{int x; LL w;friend bool operator < (state a, state b){return a.w > b.w;}
};
void dijkstra(int s){priority_queue< state > q;q.push((state){s, 0});while(!q.empty()){state u = q.top(); q.pop();int x = u.x;if(vis[x]) continue;vis[x] = 1;for(int i = head[x]; i; i = E[i].last){int v = E[i].v; LL w = E[i].w;if(dis[v] > dis[x] + w){dis[v] = dis[x] + w;q.push((state){v, dis[v]});}}}
}
int main(){n = read(), m = read();for(int i = 1; i <= n; i++){rk[make_pair(i, 0)] = ++tot;}for(int i = 1; i <= m; i++){u = read(), v = read(); c = read(), w = 1LL * read();if(!rk[make_pair(u, c)]) rk[make_pair(u, c)] = ++tot;if(!rk[make_pair(v, c)]) rk[make_pair(v, c)] = ++tot;val[make_pair(u, c)] += w;val[make_pair(v, c)] += w;ut[i] = u, vt[i] = v, wt[i] = w, ct[i] = c;}for(int i = 1; i <= m; i++){int u = ut[i], v = vt[i], c = ct[i], w = wt[i];add(rk[make_pair(u, 0)], rk[make_pair(v, 0)], w);//改变颜色,不做限制 add(rk[make_pair(u, 0)], rk[make_pair(v, c)], 0);//改变颜色,必须限制 add(rk[make_pair(u, c)], rk[make_pair(v, 0)], val[make_pair(u, c)] - w);add(rk[make_pair(u, 0)], rk[make_pair(v, 0)], val[make_pair(u, c)] - w);add(rk[make_pair(v, 0)], rk[make_pair(u, 0)], w);//改变颜色,不做限制 add(rk[make_pair(v, 0)], rk[make_pair(u, c)], 0);//改变颜色,必须限制 add(rk[make_pair(v, c)], rk[make_pair(u, 0)], val[make_pair(v, c)] - w);add(rk[make_pair(v, 0)], rk[make_pair(u, 0)], val[make_pair(v, c)] - w);}memset(dis, 0x3f, sizeof dis);dis[rk[make_pair(1, 0)]] = 0;dijkstra(rk[make_pair(1, 0)]);res = dis[rk[make_pair(n, 0)]];if(res == 0x3f3f3f3f3f3f3f3f) res = -1;printf("%lld\n", res);return 0;
}

相关文章:

noip模拟赛多校第八场 T3 遥控机器人 (最短路 + 技巧拆点)

题面 简要题意&#xff1a; 给你一个 n n n 个点 m m m 条边的图。边 i i i 有颜色 c i c_i ci​。你可以选择一些边改变它们的颜色成为区间 [ 1 , m ] [1, m] [1,m] 中的任意颜色&#xff0c;改变一条边 i i i 一次的代价是 w i w_i wi​。询问你能否在一些改变…...

高防IP的原理

高防IP&#xff0c;把域名解析到高防IP上(web事务只要把域名指向高防IP 即可。非web事务&#xff0c;把事务IP换成高防IP即可)一起在高防IP上设置转发规矩;所有公网流量都会走高防IP&#xff0c;通过端口协议转发的方法将用户的拜访通过高防IP转发到源站IP&#xff0c;一起将歹…...

Apache Doris (五十一): Doris数据缓存

🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹哥教你大数据个人主页-哔哩哔哩视频 目录 1....

一、配置环境

一、配置Java环境 确保安装了Java开发工具包&#xff08;JDK&#xff09;&#xff0c;并且设置了JAVA_HOME环境变量。 二、配置FFmpeg环境 如果使用了FFmpeg相关的功能&#xff0c;需要确保系统中已经安装了FFmpeg&#xff0c;并且设置了FFMPEG_HOME环境变量。 ffmpeg安装教…...

各种 sql 语句

sql 语句&#xff1a; SELECT max(val) as level_max_val from (select greatest(level1,level2,level3,level4,level5,level6,level7,level8,level9,level10) as val from kbt_2020cv52_data) k;...

CentOS/RHEL7环境下更改网卡名称为CentOS6的传统命名规则

图片 CentOS/RHEL7网卡命名规则介绍 图片 传统的Linux服务器网卡的名称命名方式是从eth0,eth1,eth2....这种方式命名的&#xff0c;但是这个编号往往不一定准确对应网卡接口的物理顺序&#xff0c;常规模式下我们使用的服务器设备可能只有一张网卡&#xff0c;若网卡较多的情…...

飞书开发学习笔记(三)-利用python开发调试云文档和电子表格

飞书开发学习笔记(三)-利用python开发调试云文档和电子表格 一.建立Python飞书开发环境 首先还是进入开放平台下的API调试台 飞书开放平台&#xff1a;https://open.feishu.cn/app?langzh-CN 以获取"我的空间"下的文件清单为例&#xff0c;通过获取飞书API调试台提…...

爆火的正规号卡推广分销 流量卡分销代理平台

正规号卡推广和流量卡分销代理可以通过“聚量推客”申请 聚量推客上的号卡单价高 数据及时 结算快&#xff0c;你还可以搭配平台上的拉新产品各种推广场景&#xff0c;更值得拥有哦...

Gin框架入门实战系列教程之Gin环境搭建 Gin程序的热加载 Gin路由 GET POST PUT DELETE

Gin框架入门实战系列教程之Gin环境搭建 Gin程序的热加载 Gin路由 GET POST PUT DELETE 主讲教师&#xff1a;&#xff08;大地&#xff09; 在线文档见网盘下载&#xff1a; 百度网盘 请输入提取码 提取码&#xff1a;abcd 一、Gin介绍 Gin 是一个 Go (Golang) 编写的轻量级…...

浏览器自动播放音视频-前端实现方案

目录 前言 浏览器自动播放策略 策略详情&#xff1a; 实现方案 方案1&#xff1a; 互动后播放 方案2&#xff1a; 互动后出声 总结 前言 在开发中可能有遇到这样的需求&#xff0c;当用户打开页面后&#xff0c;需要自动播放视频或音频&#xff0c;按理说那就打开页面…...

HttpUtils工具类

作为Java开发程序员&#xff0c;需要我们经常写一些工具类来简化开发过程&#xff0c;我们自己肯定写过或者用过HttpUtils用来发送http请求&#xff0c;但是每次手写太繁琐了&#xff0c;于是就按照标准写了一个Http工具类&#xff0c;现在分享出来。 1.HTTP请求简介 HTTP(Hy…...

AI:59-基于深度学习的行人重识别

🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌在这个漫长的过程,中途遇到了不少问题,但是…...

TCP编程及基础知识

一、端口号 为了区分一台主机接收到的数据包应该转交给哪个进程来进行处理&#xff0c;使用端口号来区分TCP端口号与UDP端口号独立端口用两个字节来表示 2byte&#xff08;65535个&#xff09; 众所周知端口&#xff1a;1~1023&#xff08;1~255之间为众所周知端口&#xff…...

二百零一、Flink——Flink配置状态后端运行后报错:Can not create a Path from an empty string

一、目的 在尚硅谷学习用Flink配置状态后端的项目中&#xff0c;运行报错Exception in thread "main" java.lang.IllegalArgumentException: Can not create a Path from an empty string 二、Flink的状态后端(state backend)类型 &#xff08;一&#xff09;Memo…...

Python 爬虫基础

Python 爬虫基础 1.1 理论 在浏览器通过网页拼接【/robots.txt】来了解可爬取的网页路径范围 例如访问&#xff1a; https://www.csdn.net/robots.txt User-agent: * Disallow: /scripts Disallow: /public Disallow: /css/ Disallow: /images/ Disallow: /content/ Disallo…...

亚马逊云科技大语言模型的创新科技

陈老老老板&#x1f934; &#x1f9d9;‍♂️本文专栏&#xff1a;生活&#xff08;主要讲一下自己生活相关的内容&#xff09;生活就像海洋,只有意志坚强的人,才能到达彼岸。 &#x1f9d9;‍♂️本文简述&#xff1a;亚马逊云科技大语言模型的创新科技 &#x1f9d9;‍♂️上…...

Qt 各种数据类型

目录 1. 基础类型 2. log 输出 3. 字符串类型 3.2 QByteArray 构造函数 数据操作 子字符串查找和判断 遍历 查看字节数 类型转换 3.3 QString 4. QVariant 4.1 标准类型 4.2 自定义类型 5. 位置和尺寸 5.1 QPoint 5.2 QLine 5.3 QSize 5.4 QRect 6. 日期和…...

电动车展示预约小程序的作用如何

电动车可以说是现在出行常见的方法&#xff0c;覆盖年龄广几乎是每家必备&#xff0c;也有不小大小品牌和经销商&#xff0c;市场需求较高&#xff0c;但在实际经营中&#xff0c;对经销商来时也面临着一些痛点&#xff1a; 1、品牌传播产品展示难 不同品牌竞争很大&#xff…...

「随笔」浅谈2023年云计算的发展趋势

在2023年&#xff0c;云计算的发展趋势将受到政治、经济、社会和科技四个维度的影响。以下是对这些维度的具体分析&#xff1a; 1.1 政治维度&#xff1a; 全球政策推动&#xff1a; 随着全球各国政策对云计算的重视程度不断提高&#xff0c;云计算服务将获得更广泛的市场准入…...

高性能三防工业平板电脑 防摔防爆电容屏工控平板

HT1000是一款高性能工业三防平板&#xff0c;10.1英寸超清大屏&#xff0c;厚度仅14.9mm&#xff0c;超薄机身&#xff0c;可轻松插入袋中&#xff0c;方便携带&#xff0c;搭载8核2.0GHz高性能CPU&#xff0c;行业领先的Android 11.0&#xff0c;设备性能大幅提升&#xff0c;…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...

macOS 终端智能代理检测

&#x1f9e0; 终端智能代理检测&#xff1a;自动判断是否需要设置代理访问 GitHub 在开发中&#xff0c;使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新&#xff0c;例如&#xff1a; fatal: unable to access https://github.com/ohmyzsh/oh…...

OpenGL-什么是软OpenGL/软渲染/软光栅?

‌软OpenGL&#xff08;Software OpenGL&#xff09;‌或者软渲染指完全通过CPU模拟实现的OpenGL渲染方式&#xff08;包括几何处理、光栅化、着色等&#xff09;&#xff0c;不依赖GPU硬件加速。这种模式通常性能较低&#xff0c;但兼容性极强&#xff0c;常用于不支持硬件加速…...