当前位置: 首页 > news >正文

NLP常见任务的分类指标

自然语言处理(NLP)任务的评估指标因任务类型和目标而异。以下是一些常见的 NLP 任务以及相应的评估指标:

1、 文本分类任务:

准确率(Accuracy):分类正确的样本数量与总样本数量的比例。
精确率(Precision):针对预测为正例的样本,实际为正例的比例。
召回率(Recall):实际为正例的样本中被预测为正例的比例。
F1 分数(F1 Score):精确率和召回率的调和平均值,综合考虑了两者。

2、命名实体识别任务:

准确率(Accuracy):正确标识的命名实体数量与总实体数量的比例。
精确率(Precision):标识为命名实体的实体中正确的比例。
召回率(Recall):实际为命名实体的实体中被正确标识的比例。
F1 分数(F1 Score):精确率和召回率的调和平均值。

3、机器翻译任务:

BLEU 分数(Bilingual Evaluation Understudy):根据 n-gram 重叠计算机器生成的译文与参考译文之间的相似性。
METEOR 分数(Metric for Evaluation of Translation with Explicit ORdering):根据精确匹配和词序匹配计算机器生成的译文与参考译文之间的相似性。
TER 分数(Translation Edit Rate):机器生成的译文与参考译文之间的编辑距离。

4、文本生成任务:

BLEU 分数(Bilingual Evaluation Understudy):根据 n-gram 重叠计算生成文本与参考文本之间的相似性。
ROUGE 分数(Recall-Oriented Understudy for Gisting Evaluation):根据重叠的词、短语和序列计算生成文本与参考文本之间的相似性。

(1)文本纠错任务:

在文本纠错任务中,常用的评估指标包括以下几种:

编辑距离(Edit Distance):编辑距离是衡量两个字符串之间的相似性的指标。在文本纠错任务中,可以将编辑距离用于评估模型生成的纠错文本与参考纠错文本之间的差异。编辑距离越小,表示模型的纠错结果与参考结果越接近。

准确率(Accuracy):准确率是指模型纠错正确的样本数量与总样本数量的比例。在文本纠错任务中,可以根据模型生成的纠错文本与参考纠错文本是否一致来计算准确率。

错误率(Error Rate):错误率是指模型纠错错误的样本数量与总样本数量的比例。在文本纠错任务中,可以根据模型生成的纠错文本与参考纠错文本的不一致之处计算错误率。

语法错误率(Grammar Error Rate):语法错误率是指模型生成的纠错文本中存在语法错误的样本数量与总样本数量的比例。该指标用于衡量模型在语法上的纠错能力。

拼写错误率(Spelling Error Rate):拼写错误率是指模型生成的纠错文本中存在拼写错误的样本数量与总样本数量的比例。该指标用于衡量模型在拼写上的纠错能力。

5、问答任务:

准确率(Accuracy):回答正确的问题数量与总问题数量的比例。
MRR 分数(Mean Reciprocal Rank):倒数排名的平均值,衡量首次正确回答问题的效果。
MAP 分数(Mean Average Precision):平均精确率的平均值,考虑了所有正确回答的排名。

相关文章:

NLP常见任务的分类指标

自然语言处理(NLP)任务的评估指标因任务类型和目标而异。以下是一些常见的 NLP 任务以及相应的评估指标: 1、 文本分类任务: 准确率(Accuracy):分类正确的样本数量与总样本数量的比例。 精确率…...

node插件express(路由)的插件使用(二)——body-parser和ejs插件的基本使用

文章目录 前言一、express使用中间件body-parser获取请全体的数据1. 代码2. 效果 二、express使用ejs(了解即可)1.安装2.作用3.基本使用(1)代码(2)代码分析和效果 4.列表渲染(1)代码…...

学习c++的第十天

目录 类 & 对象 类定义 对象的建立和使用 构造函数(Constructor) 析构函数(Destructor) 拷贝构造函数 扩展知识 this指针 友元函数的使用方法 友元类的使用方法 常数据的使用及初始化 类 & 对象 什么是类?什么是对象?对于面向对象的…...

895. 最长上升子序列

题目&#xff1a; 895. 最长上升子序列 - AcWing题库 思路&#xff1a;dp 代码&#xff1a; #include<iostream> #include<cstdio> #include<cmath> using namespace std; typedef long long ll; const int N1010; int f[N];//表示以i结尾的最大上升子序列…...

岩土工程铁路桥梁监测中智能振弦传感器的应用方案

岩土工程铁路桥梁监测中智能振弦传感器的应用方案 智能振弦传感器是近年来岩土工程和桥梁监测领域的重要技术之一。它具有高灵敏度、高精度、高可靠性等优点&#xff0c;并且能够实时对结构物振动进行监测和分析。本文针对岩土工程铁路桥梁监测中智能振弦传感器的应用方案进行…...

【数智化人物展】觉非科技CEO李东旻:数据闭环,智能驾驶数智时代发展的新引擎...

李东旻 本文由觉非科技CEO李东旻投递并参与《2023中国企业数智化转型升级先锋人物》榜单/奖项评选。 大数据产业创新服务媒体 ——聚焦数据 改变商业 数智化的主要作用是帮助决策。它的核心是大数据&#xff0c;以大数据为基础&#xff0c;匹配合适的AI技术&#xff0c;促使数…...

字符型液晶显示器LCD 1602的显示控制(Keil+Proteus)

前言 趁机把LCD 1602的实验完成了&#xff0c;那个电路图有几个地方没弄懂&#xff0c;但是去掉也没有报错&#xff0c;就没管了。 LCD1602_百度百科 (baidu.com)https://baike.baidu.com/item/LCD1602/6014393?frge_ala LCD1602液晶显示屏通过电压来改变填充在两块平行板之…...

为什么我学了几天 STM32 感觉一脸茫然?

今日话题&#xff0c;为什么我学了几天 STM32 感觉一脸茫然&#xff1f;从51单片机过渡到STM32&#xff0c;首先需要理解“单片机”究竟是什么&#xff0c;编程语言虽然重要&#xff0c;但也需要深入理解。51单片机的控制相对简单&#xff0c;基本是函数调用&#xff0c;通过给…...

DC-DC降压芯片120V转12V5A大功率SL3038电源芯片

本文将介绍一款DC-DC降压芯片&#xff0c;将120V的电压转换为12V5A的大功率输出&#xff0c;使用SL3038电源芯片实现。在开始介绍之前&#xff0c;我们先来了解一下DC-DC降压芯片和SL3038电源芯片的基本原理和特点。 DC-DC降压芯片是一种常见的电源管理芯片&#xff0c;它可以将…...

CE认证木质玩具TUME外贸出口测试报告解析

木制玩具&#xff0c;顾名思义&#xff0c;使用木制原料制成的玩具。木制玩具具有牢固耐玩、安全卫生&#xff0c;摔不碎&#xff0c;不生锈&#xff0c;无锋利棱角的特点。深受大家的喜爱。木质玩具出口需办理CE认证。 CE认证是一种安全认证标志&#xff0c;代表欧盟认可的&a…...

oracle_19c 安装

oracle安装部署 1、安装docker,docker-compose环境。 curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun curl -L "https://github.com/docker/compose/releases/download/1.14.0-rc2/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/b…...

随时随地时时刻刻使用GPT类应用

疑问 很多人说GPT的广泛使用可能会使人们失业&#xff0c;会对一些互联网公司的存活造成挑战&#xff0c;那么这个说法是真的吗&#xff1f; 这个说法并不完全准确。虽然GPT等AI技术的广泛应用可能会对某些行业和职业产生影响&#xff0c;但并不意味着它会导致人们失业或互联网…...

运动检测辅助系统

运动检测辅助系统是一种结合了传感器技术、数据处理技术和智能算法的系统&#xff0c;旨在帮助用户监测、评估和改善其运动行为及健康状况。这类系统通常利用多种传感器&#xff08;如运动传感器、摄像头、心率监测器等&#xff09;采集用户的运动数据&#xff0c;并通过数据处…...

0002Java安卓程序设计-基于Uniapp+springboot菜谱美食饮食健康管理App

文章目录 开发环境 《[含文档PPT源码等]精品基于Uniappspringboot饮食健康管理App》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、包运行成功 编程技术交流、源码分享、模板分享、网课教程 &#x1f427;裙&#xff1a;776871563 功能介绍&#xff…...

LeetCode算法题解(回溯)|39. 组合总和、40. 组合总和 II、131. 分割回文串

一、39. 组合总和 题目链接&#xff1a;39. 组合总和 题目描述&#xff1a; 给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target &#xff0c;找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 &#xff0c;并以列表形式返回。你可以按 任意…...

基于springboot实现招聘信息管理系统项目【项目源码+论文说明】

基于springboot实现招聘信息管理系统演示 摘要 在Internet高速发展的今天&#xff0c;我们生活的各个领域都涉及到计算机的应用&#xff0c;其中包括招聘信息管理系统的网络应用&#xff0c;在外国招聘信息管理系统已经是很普遍的方式&#xff0c;不过国内的线上管理系统可能还…...

Freeswitch实现软电话功能

1.话务步骤 分机注册->登录->拨打电话-> /*<--注册分机-->*/ EslMessage eslMessage1 inboundClient.sendApiCommand("callcenter_config agent set contact", "21009default user/1000"); System.out.println("#####dial eslMessa…...

RMI初探

接口 import java.rmi.Remote; import java.rmi.RemoteException;public interface IFoo extends Remote {String say(String name) throws RemoteException; }import java.rmi.Remote; import java.rmi.RemoteException;public interface IBar extends Remote {String buy(Str…...

NLP之BM25:BM25算法的简介、相关库、案例应用之详细攻略

NLP之BM25:BM25算法的简介、相关库、案例应用之详细攻略 目录 相关文章 NLP之BM25:BM25算法的简介、相关库、案例应用之详细攻略 Py之rank_bm25:rank_bm25的简介、安装、使用方法 BM25算法的简介...

YOLOv5改进,全维动态卷积

目录 一、理论部分 网络结构 实验结果 二、应用到YOLOv5 代码 yaml配置文件...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...