当前位置: 首页 > news >正文

时序预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost时间序列预测

目录

    • 时序预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现SVM-Adaboost时间序列预测(风电功率预测);
2.运行环境为Matlab2020b;
3.data为数据集,excel数据,单变量时间序列数据,SVM_AdaboostTS.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、MAPE、RMSE多指标评价。

模型描述

SVM-AdaBoost是一种将SVM和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱学习器组合起来形成一个强学习器,其中每个学习器都是针对不同数据集和特征表示训练的。SVM-AdaBoost算法的基本思想是将SVM作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个SVM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost时间序列预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

时序预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost时间序列预测 目录 时序预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.Matlab实现SVM-Adaboost时间序列预测(风…...

useEffect和useLayoutEffect的区别

烤冷面加辣条的抖音 - 抖音 (douyin.com) 一、看下面的代码,即使调换useLayoutEffect和useEffect的位置依旧是useLayoutEffect先输出。 import { useState, useEffect, useLayoutEffect } from "react"; const Index () > {useLayoutEffect(() >…...

[科研图像处理]用matlab平替image-j,有点麻烦,但很灵活!

做材料与生物相关方向的同学应该对image-j并不陌生,前几天有个师兄拜托我用image-j分析一些图片,但使用过后发现我由于不了解image-j的工作流程而对结果并不确信,而且image-j的功能无法拓展,对有些图片的处理效果并不好&#xff0…...

Node.js |(五)包管理工具 | 尚硅谷2023版Node.js零基础视频教程

学习视频:尚硅谷2023版Node.js零基础视频教程,nodejs新手到高手 文章目录 📚概念介绍📚npm🐇安装npm🐇基本使用🐇生产依赖与开发依赖🐇npm全局安装🐇npm安装指定包和删除…...

【ES专题】ElasticSearch集群架构剖析

目录 前言阅读对象阅读导航要点笔记正文一、ES集群架构1.1 为什么要使用ES集群架构1.2 ES集群核心概念1.2.1 节点1.2.1.1 Master Node主节点的功能1.2.1.2 Data Node数据节点的功能1.2.1.3 Coordinate Node协调节点的功能1.2.1.4 Ingest Node协调节点的功能1.2.1.5 其他节点功能…...

Kafka与Flink的整合 -- sink、source

1、首先导入依赖&#xff1a; <dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka</artifactId><version>1.15.2</version></dependency> 2、 source&#xff1a;Flink从Kafka中读取数据 p…...

小鱼ROS

git clone git clone https://ghproxy.com/https://github.com/stilleshan/ServerStatus git clone 私有仓库 Clone 私有仓库需要用户在 Personal access tokens 申请 Token 配合使用.git clone https://user:your_tokenghproxy.com/https://github.com/your_name/your_priv…...

简单讲讲RISC-V跳转指令基于具体场景的实现

背景 在 RISC-V指令集中&#xff0c;一共有 6 条有条件跳转指令&#xff0c;分别是 beq、bne、blt、bltu、bge、bgeu。如下是它们的定义与接口 BEQ rs1, rs2, imm ≠ BNE rs1, rs2, imm &#xff1c; BLT rs1, rs2, imm ≥ BGE rs1, rs2, imm < unsigned BLTU rs1…...

第13章 Java IO流处理(一) File类

目录 内容说明 章节内容 一、 File类 内容说明 结合章节内容重点难点,会对重要知识点进行扩展,以及做示例说明等,以便更好理解重点难点 章节内容 一、 File类 1、文件与目录的描述类——File ✔️ File类并不用来进行文件的读/写操作,并未涉及到写入或读取文件内容的…...

测试面试题集锦(四)| Linux 与 Python 编程篇(附答案)

本系列文章总结归纳了一些软件测试工程师常见的面试题&#xff0c;主要来源于个人面试遇到的、网络搜集&#xff08;完善&#xff09;、工作日常讨论等&#xff0c;分为以下十个部分&#xff0c;供大家参考。如有错误的地方&#xff0c;欢迎指正。有更多的面试题或面试中遇到的…...

pytorch中的矩阵乘法

1. 运算符介绍 关于运算&#xff0c;*运算&#xff0c;torch.mul(), torch.mm(), torch.mv(), tensor.t() 和 *代表矩阵的两种相乘方式&#xff1a; 表示常规的数学上定义的矩阵相乘&#xff1b; *表示两个矩阵对应位置处的两个元素相乘。 1.1 矩阵点乘 *和torch.mul()等同…...

Java--Stream流详解

Stream是Java 8 API添加的一个新的抽象&#xff0c;称为流Stream&#xff0c;以一种声明性方式处理数据集合&#xff08;侧重对于源数据计算能力的封装&#xff0c;并且支持序列与并行两种操作方式&#xff09; Stream流是从支持数据处理操作的源生成的元素序列&#xff0c;源可…...

[PHP]ShopXO企业级B2C免费开源商城系统 v2.3.1

ShopXO 企业级B2C免费开源电商系统&#xff01; 求实进取、创新专注、自主研发、国内领先企业级B2C电商系统解决方案。 遵循Apache2开源协议发布&#xff0c;无需授权、可商用、可二次开发、满足99%的电商运营需求。 PCH5、支付宝小程序、微信小程序、百度小程序、头条&抖音…...

Python基础入门系列详解20篇

Python基础入门&#xff08;1&#xff09;----Python简介 Python基础入门&#xff08;2&#xff09;----安装Python环境&#xff08;Windows、MacOS、CentOS、Ubuntu&#xff09; Python基础入门&#xff08;3&#xff09;----Python基础语法&#xff1a;解释器、标识符、关键…...

P02项目(学习)

★ P02项目 项目描述&#xff1a;安全操作项目旨在提高医疗设备的安全性&#xff0c;特别是在医生离开操作屏幕时&#xff0c;以减少非授权人员的误操作风险。为实现这一目标&#xff0c;我们采用多层次的保护措施&#xff0c;包括人脸识别、姿势检测以及二维码识别等技术。这些…...

pandas 笔记:get_dummies分类变量one-hot化

1 函数介绍 pandas.get_dummies 是 pandas 库中的一个函数&#xff0c;它用于将分类变量转换为哑变量/指示变量。所谓的哑变量&#xff0c;就是将分类变量的每一个不同的值转换为一个新的0/1变量。在输出的DataFrame中&#xff0c;每一列都以该值的名称命名 pandas.get_dummi…...

PTE作文练习(一)

目录 65分备考建议 WE模版 范文 Supporting ideas: SWT 65分备考建议 RA重在多听标准的正确的示范&#xff0c;RS重在抓大放小&#xff0c;WFD重在整理错题&#xff0c;以及反反复复的车轮战&#xff0c;FIBRW重在“以对代记” 就是直接看答案&#xff0c;节约时间&#…...

如何做到一套FPGA工程无缝兼容两款不同的板卡?

试想这样一种场景,有两款不同的FPGA板卡,它们的功能代码90%都是一样的,但是两个板卡的管脚分配完全不同,一般情况下,我们需要设计两个工程,两套代码,之后还需要一直维护两个版本。 那么有没有一种自动化的方式,实现一个工程,编译出一个程序文件,下载到这两个不同的板…...

VSCode修改主题为Eclipse 绿色护眼模式

前言 从参加开发以来&#xff0c;一直使用eclipse进行开发&#xff0c;基本官方出新版本&#xff0c;我都会更新。后来出来很多其他的IDE工具&#xff0c;我也尝试了&#xff0c;但他们的主题都把我劝退了&#xff0c;黑色主题是谁想出来&#xff1f;&#x1f602; 字体小的时…...

conan和cmake编译器版本不匹配问题解决

conan和cmake编译器版本不匹配问题解决 1 问题现象2 解决方法2.1 在CMakeLists.txt禁止编译器检查2.1.1 修改方式 2.2 探查问题出现的根本原因2.2.1 安装升级gcc2.2.2 安装升级g 注 执行环境&#xff1a;ubuntu 1 问题现象 conan要求的编译器版本和cmake检测到的当前的编译器…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...