当前位置: 首页 > news >正文

【聚类】谱聚类解读、代码示例

【聚类】谱聚类详解、代码示例

文章目录

1. 介绍

谱聚类的基本原理:

  • 把所有数据看成空间中的点,这些点之间可以用变连接起;
  • 距离较远的两个点之间的边权重较低,而距离较近的两个点之间的边权重较高;
  • 通过对所有数据点组成的图进行切图,让切图后的不同的子图间边权重和尽可能小(即距离远),而子图内的边权重和尽可能高(即距离近)。

难点:

  • 如何构建图?
  • 如何切分图?

2. 方法解读

2.1 先验知识

2.1.1 无向权重图

在这里插入图片描述

2.1.2 拉普拉斯矩阵

在这里插入图片描述

2.2 构建图(第一步)

2.2.1 ϵ\epsilonϵ 邻近法

在这里插入图片描述

2.2.2 k 近邻法

在这里插入图片描述

2.2.3 全连接法

比前两种方法,第三种方法所有的点之间的权重值都大于0,因此称之为全连接法。

  • 可以选择不同的核函数来定义边权重,常用的有多项式核函数,高斯核函数和Sigmoid核函数。
  • 最常用的是高斯核函数 RBF
    在这里插入图片描述

2.3 切图(第二步)

在这里插入图片描述
其中Aiˉ\bar {\text{A}_i}AiˉA\text{A}A 的补集。

进而,如何切图使子图内的点权重高,子图之间的点权重低?

2.3.1 最小化 cut (A1, A2, . . . Ak)\text{cut (A1, A2, . . . Ak)}cut (A1, A2, . . . Ak)

一个自然的想法就是最小化 cut (A1, A2, . . . Ak)\text{cut (A1, A2, . . . Ak)}cut (A1, A2, . . . Ak),但是可以发现,这种极小化的切图存在问题,如下图:
在这里插入图片描述

  • 为了避免最小切图导致的切图效果不佳,我们需要对每个子图的规模做出限定;
  • 一般来说,有两种切图方式,第一种是 RatioCut,第二种是 Ncut。

2.3.2 RatioCut 切图

对于每个切图,不仅要考虑最小化 cut (A1, A2, . . . Ak)\text{cut (A1, A2, . . . Ak)}cut (A1, A2, . . . Ak),还要考虑最大化每个子图样本的个数,即最小化 RatioCut函数:
在这里插入图片描述
在这里插入图片描述

  • 这里需要提一下,hih_ihi是正交基,但并不是单位正交基,因为hiThi=1∣Aj∣{h_i}^Th_i = \frac{1}{|A_j|}hiThi=Aj1,而不是1。但是不影响后面结论。

2.3.3 Ncut切图

在这里插入图片描述
在这里插入图片描述

3. 谱聚类流程

3.1 输入与输出

  • 输入:样本集 D=(x1,x2,...,xn)D=(x_1, x_2,...,x_n)D=(x1,x2,...,xn),邻接矩阵的生成方式,降维后的维度k1,聚类方法,聚类后的簇个数k2;
  • 输出: 簇划分C(c1,c2,...,ck2)C ( c_1, c_2,. . .,c_{k2})C(c1,c2,...,ck2)

3.2 一般流程

  • 根据邻接矩阵生成方式构建邻接矩阵W,构建度矩阵D;
  • 计算出拉普拉斯矩阵L;
  • 构建标准化后的拉普拉斯矩阵D−12LD−12D^{-\frac {1}{2}}LD^{-\frac {1}{2}}D21LD21
  • ​计算D−12LD−12D^{-\frac {1}{2}}LD^{-\frac {1}{2}}D21LD21最小的k1个特征值所各自对应的特征向量f;
  • 将各自对应的特征向量f组成的矩阵按行标准化,最终组成n × k1 维矩阵F;
  • 对F 中的每一行作为一个k1维样本,共n个样本,用输入的聚类方法进行聚类,聚类个数为k2;
  • 得到簇划分C(c1,c2,...,ck2)C ( c_1, c_2,. . .,c_{k2})C(c1,c2,...,ck2)

4. 代码演示

import numpy as np 
import matplotlib.pyplot as plt 
from sklearn import cluster, datasets
from sklearn.preprocessing import StandardScalernp.random.seed(0)# 数据构造
n_samples = 1500
noisy_circles = datasets.make_circles(n_samples=n_samples, factor=0.2, noise=0.05)
noisy_moons = datasets.make_moons(n_samples=n_samples, noise=0.05)
blobs = datasets.make_blobs(n_samples=n_samples, random_state=8)data_sets = [(noisy_circles, {"n_clusters": 3}),(noisy_moons, {"n_clusters": 2}), (blobs, {"n_clusters": 3})
]
colors = ["#377eb8", "#ff7f00", "#4daf4a"]
affinity_list = ['rbf', 'nearest_neighbors']plt.figure(figsize=(20, 15))for i_dataset, (dataset, algo_params) in enumerate(data_sets):params = algo_paramsX, y = datasetX = StandardScaler().fit_transform(X)for i_affinity, affinity_strategy in enumerate(affinity_list):spectral = cluster.SpectralClustering(n_clusters=params['n_clusters'],eigen_solver='arpack', affinity=affinity_strategy)spectral.fit(X)y_pred = spectral.labels_.astype(int)y_pred_colors = []for i in y_pred:y_pred_colors.append(colors[i])plt.subplot(3, 4, 4*i_dataset+i_affinity+1)plt.title(affinity_strategy)plt.scatter(X[:, 0], X[:, 1], color=y_pred_colors)# plt.show()
plt.savefig("a.jpg")

在这里插入图片描述

5. 总结

  • 优点:
    • 谱聚类只需要数据之间的邻接矩阵,因此对于处理稀疏数据的聚类很有效。这点传统聚类算法比如K-Means很难做到;
    • 由于使用了降维,因此在处理高维数据聚类时的复杂度比传统聚类算法好。
  • 缺点:
    • 如果最终聚类的维度非常高,则由于降维的幅度不够,谱聚类的运行速度和最后的聚类效果均不好;
    • 聚类效果依赖于邻接矩阵,不同的邻接矩阵得到的最终聚类效果可能很不同。

6. 参考

【1】https://blog.csdn.net/qq_42735631/article/details/121010760

相关文章:

【聚类】谱聚类解读、代码示例

【聚类】谱聚类详解、代码示例 文章目录【聚类】谱聚类详解、代码示例1. 介绍2. 方法解读2.1 先验知识2.1.1 无向权重图2.1.2 拉普拉斯矩阵2.2 构建图(第一步)2.2.1 ϵ\epsilonϵ 邻近法2.2.2 k 近邻法2.2.3 全连接法2.3 切图(第二步&#xf…...

最牛逼的垃圾回收期ZGC(1),简介

1丶什么是ZGC? ZGC是JDK 11中引入的一种可扩展的、低延迟的垃圾收集器。ZGC最主要的特点是:在非常短的时间内(一般不到10ms),就可以完成一次垃圾回收,而且这个时间是与堆的大小无关的。另外,ZGC支持非常大…...

微服务的Feign到底是什么

Feign是什么 分区是一种数据库优化技术,它可以将大表按照一定的规则分成多个小表,从而提高查询和维护的效率。在分区的过程中,数据库会将数据按照分区规则分配到不同的分区中,并且可以在分区中使用索引和其他优化技术来提高查询效…...

JavaScript 正则表达式

正则表达式(英语:Regular Expression,在代码中常简写为regex、regexp或RE)使用单个字符串来描述、匹配一系列符合某个句法规则的字符串搜索模式。搜索模式可用于文本搜索和文本替换。什么是正则表达式?正则表达式是由一…...

【批处理脚本】-1.15-文件内字符串查找命令find

"><--点击返回「批处理BAT从入门到精通」总目录--> 共7页精讲(列举了所有find的用法,图文并茂,通俗易懂) 在从事“嵌入式软件开发”和“Autosar工具开发软件”过程中,经常会在其集成开发环境IDE(CodeWarrior,S32K DS,Davinci,EB Tresos,ETAS…)中,…...

【手撕面试题】JavaScript(高频知识点二)

目录 面试官&#xff1a;请你谈谈JS的this指向问题 面试官&#xff1a;说一说call apply bind的作用和区别&#xff1f; 面试官&#xff1a;请你谈谈对事件委托的理解 面试官&#xff1a;说一说promise是什么与使用方法&#xff1f; 面试官&#xff1a;说一说跨域是什么&a…...

Web学习1_HTML

在学校期间学的Web知识忘了一些&#xff0c;很多东西摸棱两可&#xff0c;现重新系统的学习一下。 首先下载安装完vsc后并下载拓展文件live server&#xff08;模拟一个服务器&#xff09; Auto Rename Tag&#xff08;在写网页时&#xff0c;自动对齐前后标签&#xff09;在设…...

华为OD机试真题Java实现【靠谱的车】真题+解题思路+代码(20222023)

靠谱的车 题目 程序员小明打了一辆出租车去上班。出于职业敏感,他注意到这辆出租车的计费表有点问题,总是偏大。 出租车司机解释说他不喜欢数字4,所以改装了计费表,任何数字位置遇到数字4就直接跳过,其余功能都正常。 比如: 23再多一块钱就变为25; 39再多一块钱变…...

【C++入门(下篇)】C++引用,内联函数,auto关键字的学习

前言&#xff1a; 在上一期我们进行了C的初步认识&#xff0c;了解了一下基本的概念还学习了包括&#xff1a;命名空间&#xff0c;输入输出以及缺省参数等相关的知识。今天我们将进一步对C入门知识进行学习&#xff0c;主要还需要大家掌握我们接下来要学习的——引用&#xf…...

基于合作型Stackerlberg博弈的考虑差别定价和风险管理的微网运行策略研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

2023年全国最新保安员精选真题及答案8

百分百题库提供保安员考试试题、保安职业资格考试预测题、保安员考试真题、保安职业资格证考试题库等&#xff0c;提供在线做题刷题&#xff0c;在线模拟考试&#xff0c;助你考试轻松过关。 81.以下各组情形都属于区域巡逻中异常情况的是&#xff08;&#xff09;。 A&#x…...

JavaScript高级程序设计读书分享之6章——MapSet

JavaScript高级程序设计(第4版)读书分享笔记记录 适用于刚入门前端的同志 Map 作为 ECMAScript 6 的新增特性&#xff0c;Map 是一种新的集合类型&#xff0c;为这门语言带来了真正的键/值存储机制。Map 的大多数特性都可以通过 Object 类型实现&#xff0c;但二者之间还是存在…...

改进的 A*算法的路径规划(路径规划+代码+毕业设计)

引言 近年来&#xff0c;随着智能时代的到来&#xff0c;路径规划技术飞快发展&#xff0c;已经形成了一套较为成熟的理论体系。其经典规划算法包括 Dijkstra 算法、A算法、D算法、Field D算法等&#xff0c;然而传统的路径规划算法在复杂的场景的表现并不如人意&#xff0c;例…...

Tina_Linux存储性能参考指南

OpenRemoved_Tina_Linux_存储性能_参考指南 1 概述 1.1 编写目的 介绍TinaLinux 存储性能的测试方法和历史数据&#xff0c;提供参考。 1.2 适用范围 Tina V3.0 及其后续版本。 1.3 相关人员 适用于TinaLinux 平台的客户及相关技术人员。 2 经验性能值 Flash 性能与实…...

NCRE计算机等级考试Python真题(四)

第四套试题1、以下选项中&#xff0c;不属于需求分析阶段的任务是&#xff1a;A.需求规格说明书评审B.确定软件系统的性能需求C.确定软件系统的功能需求D.制定软件集成测试计划正确答案&#xff1a; D2、关于数据流图&#xff08;DFD&#xff09;的描述&#xff0c;以下选项中正…...

LeetCode每周刷题总结2.20-2.26

本栏目记录本人每周写的力扣题的相关学习总结。 虽然开新的栏目都没有完成 70.爬楼梯 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 解题思路&#xff1a; 斐波那契数列递归 class Solution {…...

u盘里删除的文件可以恢复吗?分享解决方法

u盘里删除的文件可以恢复吗?不知道使用过U盘的你&#xff0c;是否遇到过这样的问题呢?其实正常情况下&#xff0c;在电脑中操作u盘&#xff0c;并删除相关的文件&#xff0c;删除的文件是不会经过电脑回收站的。想要找回就需要借助相关的恢复工具才能实现。下面小编给大家分享…...

十、vben框架如何使用table来写报表

在项目开发的过程中&#xff0c;有很多特殊的table样式&#xff0c;有的时候后端会用帆软来写报表&#xff0c;但是有的特殊的报表后端就不能支持实现了&#xff0c;那么前端是如何实现的呢&#xff0c;今天我们就来讲讲。 先上效果图&#xff1a; 本次使用的tsx组件来写的报表…...

jQuery:入门

jQuery 入门 Date: January 19, 2023 目标&#xff1a; 能够说出什么是 jQuery 能够说出 jQuery 的优点 能够简单使用 jQuery 能够说出 DOM 对象和 jQuery 对象的区别 jQuery 概述 JavaScript 库 仓库&#xff1a; 可以把很多东西放到这个仓库里面。找东西只需要到仓库里…...

实例3:树莓派呼吸灯

实例3&#xff1a;树莓派呼吸灯 实验目的 通过背景知识学习&#xff0c;了解digital与analog的区别。通过GPIO对外部LED灯进行呼吸控制&#xff0c;熟悉PWM技术。 实验要求 通过python编程&#xff0c;用GPIO控制LED灯&#xff0c;使之亮度逐渐增大&#xff0c;随后减小&am…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中&#xff0c;集合判空是一个常见但容易出错的场景。传统方式虽然可行&#xff0c;但存在一些潜在问题&#xff1a; // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

小木的算法日记-多叉树的递归/层序遍历

&#x1f332; 从二叉树到森林&#xff1a;一文彻底搞懂多叉树遍历的艺术 &#x1f680; 引言 你好&#xff0c;未来的算法大神&#xff01; 在数据结构的世界里&#xff0c;“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的&#xff0c;它…...