当前位置: 首页 > news >正文

关键词聚类和凸现分析-实战1——亚急性甲状腺炎的

审稿人问题

第8页第26行-请指出#是什么意思,并解释为什么亚急性甲状腺炎在这里被列为#8。我认为在搜索亚急性甲状腺炎相关文章时,关键词共现分析应该提供关键词共现的数据。这些结果的实际用途是什么?

亚急性甲状腺炎是一种较为罕见但重要的甲状腺疾病,其特点是甲状腺肿大、颈部疼痛和甲状腺功能减退。它通常由病毒感染引起,与自身免疫反应有关。在医学研究和实践中,对疾病的重要性和研究程度常常决定了它在分类中的排名,因此亚急性甲状腺炎可能被列为#8,以凸显其在甲状腺疾病中的重要性。
然后就是这么回答她,至于为什么第八,有可能跟你筛选的数据,研究的时间段有关

实际用途,就是结合你研究的亚急性甲状腺炎的研究领域展开,看研究热点
关键词共现分析是一种文本挖掘技术,可以用于发现文本中出现频率较高的关键词组合。在医学研究中,关键词共现分析可以用于研究某些疾病的病因、流行病学、诊断、治疗等方面。例如,对于亚急性甲状腺炎,研究人员可以使用关键词共现分析来识别与该疾病相关的其他疾病、症状、治疗方法等,以更深入地理解该疾病并提出更有效的治疗方案。

作者在讨论中讨论的热点文献信息应与文献计量分析结果相联系。在作者对热点的定位中,“疾病”、“诊断”和“临床特征”是出现频率最高的热点关键词,分别排在第3、4和8位。在最大的聚类中,“患病率”表示在第一个位置。图8中的关键字爆炸同样不包括所有热点。这些词中的“指南”和“病例报告”的词爆炸近年来也一直排在第一位。这些词也应该包括在讨论中。应当更清楚地说明使用文献计量分析结果中的哪个表或图表来确定热点。研究中的热点被认为是由作者的优先级决定的。这些部分应该在讨论中再复习一遍。

这个确实要改,我给你提供改的思路吧,毕竟也没看到原文。在文献计量分析中,使用的关键词和方法会影响结果。因此,在讨论中,需要更清楚地表明使用的哪些关键词和分析方法来确定研究中的热点,并进一步分析这些热点的重要性和实际意义。
此外,关键字爆炸图可以用于发现文献中出现频率较高的关键词,但是需要注意的是,这些关键词可能与研究的重点不一致。因此,在使用关键字爆炸图时,需要结合研究的具体目的和问题进行分析和解释,就是你研究的领域。在讨论中,应该将使用的关键字爆炸图和其结果与文献计量分析结果进行比较和讨论。
最后,您提到热点的优先级由作者决定。虽然作者可以根据自己的研究重点和目的确定研究中的热点,但是应该充分考虑读者的需求和实际应用场景,以便更好地传达研究的价值和意义。因此,在讨论中,应该更清楚地说明热点的重要性和实际意义!!!!,并提供更具体的解释和讨论。

应当更清楚地说明使用文献计量分析结果中的哪个表或图表来确定热点。研究中的热点被认为是由作者的优先级决定的。这些部分应该在讨论中再复习一遍。

就是研究热点更直观的展现出来,咩看见原文我也就提一点建议
如果您在讨论中提到了发病率、诊断和临床特征是热点关键词,您可以说明这些关键词(词频统计表个)是从哪个表格或图表中得出的。您可以提供表格或图表的名称、编号或其他标识符,并说明如何分析这些表格或图表来确定热点关键词。这样可以让读者更清楚地理解您的分析方法和结果,并提高研究的可重复性。
在说明使用的表格或图表时,还可以考虑提供表格或图表的详细说明或解释,以便读者可以更好地理解数据和分析结果。如果表格或图表中有一些需要注意的问题或限制,也可以在说明中进行说明。这样可以提高读者对研究结果的理解和信任,使研究更具有说服力。

#8 subacute thyroiditis,为什么排第八,跟你筛选的数据,和时间段有关

审稿人认为我发病率,诊断,,临床特征是聚类得出的

审稿人可能认为您在讨论中使用了聚类分析得出的热点关键词,包括发病率、诊断和临床特征。如果审稿人的意思是这样,那么您需要进行澄清和说明。我觉得最好再做一张共现图
您可以解释研究中使用的分析方法,包括文献计量分析和聚类分析,并说明使用这些方法确定研究中的热点关键词。如果您没有使用聚类分析得出这些关键词,那么您可以说明这一点,并提供文献计量分析得出的结果和研究中的热点关键词。
无论是哪种情况,您都需要提供足够的解释和说明,以便审稿人和读者可以理解和接受您的分析和结果。同时,您也可以考虑回顾和修改讨论部分,以使其更清晰、准确和具有说服力。

分析方法参参考

原文参考我的博客https://blog.csdn.net/m0_69379600/article/details/129191504

二、CiteSpace的分析原理---解释

在获取特定主题的数据后,自然而言我们会冒出一个问题:“我们拿这些数据用来做什么?”CiteSpace的最大的作用,就是能够在这些枯燥乏味、机械重复的数据中挖掘出我们想要的东西。那么,这是依靠什么原理实现的呢?

1、共被引分析

在了解共被引分析前我们需要对引文分析有个概念,引文就是论文后面的参考文献。有学者认为,引文分析就是对科学期刊、论文、作者等分析对象的引用和被引用现象进行分析,以揭示其数量特征和内在规律的一种信息计量研究方法。在了解引文分析法之前我们首先要知道,学者为什么要在其论文中印证前人的研究成果。

为什么要引证: 1. 为了对先驱者表示崇敬。 1. 为了对相关工作表示赞赏,同时表示对同行的尊敬。 1. 为了对方法或仪器设备表示认同。 1. 为了向读者提供阅读背景。 1. 为了纠正自己的工作。 1. 为了纠正别人的工作。 1. 为了批评前人的工作。 1. 为了支持某种论断。 1. 为了提醒人们注意即将发表的工作。 1. 为了找到那些传播不广、索引很差又未被引证的文献而提供线索。 1. 为了验证科学事实和数据,例如援引物理常数等。 1. 为了鉴别曾讨论过某个思想或概念的原始文献。 1. 为了鉴别某个时代的某个概念或术语的原始文献或其他著作。 1. 为了对别人的工作或思想提出反证-否定性论断。 1. 为了与别人论争某个观点的优先权。

引自: 引证论文的理由

从上面这么多引用原因我们不难看出,被引文献与当前文献在内容上是相关的。论文引用其他论文的行为可以看做是知识从不同的研究主题流动到当前所进行的研究,是知识单元从游离状态到重组产生新知识的过程。发表的论文被其他论文引用是这个过程的持续。由于这种引证行为的客观存在,随着科学研究的不断推进,引文网络也就自然而然的形成了。一篇特定的论文,引用的文献称为引用文献(即后向引证关系),这篇论文发表后,引用这篇文章的论文称为施引文献(前向引证关系)。在引证网络的基础上,延伸出两个重要的概念,一个是共被引分析,另一个是耦合分析。共被引分析挖掘参考文献之间的关系,耦合分析挖掘施引文献之间的关系,这里着重讲共被引分析。

共被引分析(Co-Citation analysis)是指两篇文献共同出现在第三篇施引文献的参考文献目录中,则这两篇文献形成共被引关系。通过对一个引文网络进行文献共被引关系挖掘的过程,就可以认为是文献共被引分析的过程。例如下图文献pb1和文献pb4在三篇论文中共同引用,那么他们的共被引次数为3次,通过一定的计算方式可以得到他们的关联强度。共被引次数越多,这说明这两篇文献相似之处越大,关联强度也越大。分析的步骤为:先从文献信息中归纳得到引证矩阵,在引证矩阵的基础上生成共被引矩阵。使用可视化技术,将共被引矩阵可视化为网络。

2、共词分析

在进行共词分析之前,首先需要先了解词频分析。词频是指所分析的文档中词语出现的次数。词频分析就是在文献信息中提取能够表达文献核心内容的关键词和主题词频次高地分布,来研究该领域发展动向和研究热点的方法。

在词频分析的基础上,对词频网络进行的更高层次的分析称为共词分析。共词分析的基本原理是对一组词两两统计它们在同一组文献中出现的次数,通过这种共现次数来测度他们之间的亲疏关系。它需要满足以下几个方面的假设。

共词分析的 假设前提: - 作者都是很认真的选择他们的技术术语的; - 当在同一篇文章中使用不同的术语时,就意味着这些不同的术语之间的关系并不是微不足道,它们一定是被作者认可和认同的; - 如果有足够多的作者对同一种关系认可,那么可以认为这种关系在他们所关注的科学领域中具有一定意义; - 当针对关键词时,经过专业学习的学者,在其论文中标引出来的关键词时能够反映文章的内容的,是值得信赖的指标。在作者标引关键词时,通常也会受到其他学者成果的影响而在论文中使用相同或类似的关键词标引自己的论文。

分析的步骤与共被引分析相近:先从文献信息中归纳得到关键词矩阵,在关键矩阵的基础上生成共词矩阵。使用可视化技术,将共词矩阵可视化为网络。

3、突现分析

CiteSpace提供Burst detection的功能来探测在某一时段引用量有较大变化的情况。用以发现某一个主题词、关键词衰落或者兴起的情况。

参考文章 CiteSpace中的Burst Detection

4、聚类分析

聚类分析指将物理或抽象对象的集合分组为由类似的对象组成的多个类的分析过程,以分析对象的相似性为基础。聚类分析有许多不同的算法,CiteSpace提供的算法有3个,3个算法的名称分别是:LSI浅语义索引、LLR对数极大似然率、互信息。对不同的数据,3种算法表现一样,可在实践中多做实践。

关于这3种算法,可以参考如下文章做进一步了解: - LSI浅语义索引 文本主题模型之潜在语义索引(LSI) - LLR对数极大似然率 Likelihood ratio test - 互信息 互信息(Mutual Information

5、CiteSpace其他功能区

对于共被引分析,CiteSpace提供了引文共被引、作者共被引和期刊共被引3种不同类型的分析方法。对于共现分析,CiteSpace提供了术语、关键词、来源、领域4种不同的共现分析。

无论是共被引分析还是共现分析,在生成网络时都需要根据共被引次数或共现次数计算网络节点之间的连接强度。CiteSpace提供了4种网络节点强度计算的方法,一般不做改动,选择默认方法。

文章分析

1、知识基础的获取

任何一个研究主题,背后都会有一个较为完整的知识体系作为支撑。这个研究主题越成熟,这个知识体系越完整,越丰富。我们知道共被引网络是由参考文献组成的网络。我们获取的这一主题的论文,其知识构成在很大程度上是由其参考文献的知识流动汇集得来的。那么由参考文献组成的共被引网络则能够很好的揭示某一个研究主题的“先验知识”,即我们可以通过获取参考文献的共被引网络的方式,得到某一研究主题的知识基础。 以关键词“高等教育”为检索对象,得到2.5万余条数据,得到的共被引网络如下:

颜色的冷暖代表了时间的远近,颜色越暖,时间越近;颜色越冷,时代越久远。那么通过对网络进行分析,对其中关键节点(即关键文献)进行研究,就可以知道,支撑支撑高等教育发展的知识基础在时间上的发展演进情况。那么我们需要研究哪一个阶段的高等教育历史,就得找到相应时段高等教育知识基础的书籍进行研读、浏览和整理。

对这个结果网络进行聚类分析,可以看到各个阶段知识基础的主题的变化情况,方便我们进行主题聚焦。可以看到,在最近的研究中,知识基础为“反馈”类的文献,此时研究也许会以这个为出发点展开研究。

在了解整体的知识基础的框架和演进趋势后,我们如何对关键文献进行定位?我们主要关注2个方面: - 高频节点:代表高被引的文献,是某个领域或多个领域的重要知识基础。 - 高中介中心性节点:代表与多篇文献形成共被引关系的文献,与多篇文献均有关系,起到“交通枢纽”的作用。相对而言,是本领域内的关键文献;同时,也是这段时期内的关键文献,在一定程度上代表着这段时期的研究热点主题。

中介中心性是指:一个结点担任其它两个结点之间最短路的桥梁的次数。一个结点充当“中介”的次数越高,它的中介中心度就越大。 引自: 度中心性(degree)、接近中心性(closeness)和中介中心性(betweenness)的理解

那么我们可以知道,同时具备高中介中心性和高频特性的节点,就是本领域内的关键文献,也是这段时期内的关键文献,代表着这段时期的研究热点主题。

如何根据文献简略信息得到文献完整信息? - 参考博文 CiteSpace的介绍与使用的“ 根据报告分析出的文献”部分。

2、学科结构的获取

一篇论文的关键词代表着这篇论文的论述重点,在一定程度上反映了这篇论文的学科结构。使用关键词共现网络,能够将数据全集中的学科结构清晰的展示出来。每一个节点代表一篇文献,节点越大,说明该关键词词频越大,与主题的相关性越大。同样,节点的颜色代表时间:颜色越暖,时间越近;颜色越冷,时代越久远。

3、研究前沿的获取

使用前面提到的burst detection,可以获取到相关研究主题的研究前沿。在获取研究前沿前,需要先点击Noun Phrases,选择Create POS Tags。

然后把Burst Terms选中,点击detect Bursts。

在弹出框中选择noun phrases。名词短语

在知识图谱的界面,旁边有个Control Panel,点击Burstness,点击Refresh,就可以生成我们所需要的关键词图片图。

相关文章:

关键词聚类和凸现分析-实战1——亚急性甲状腺炎的

审稿人问题第8页第26行-请指出#是什么意思,并解释为什么亚急性甲状腺炎在这里被列为#8。我认为在搜索亚急性甲状腺炎相关文章时,关键词共现分析应该提供关键词共现的数据。这些结果的实际用途是什么?亚急性甲状腺炎是一种较为罕见但重要的甲状腺疾病&am…...

二叉树——二叉搜索树中的众数

二叉搜索树中的众数 链接 给你一个含重复值的二叉搜索树(BST)的根节点 root ,找出并返回 BST 中的所有 众数(即,出现频率最高的元素)。 如果树中有不止一个众数,可以按 任意顺序 返回。 假定…...

安装_配置参数解读_集群安装配置_启动选举_搭建启停脚本---大数据之ZooKeeper工作笔记004

这里首先下载zookeeper安装包,可以看到官网地址 找到download 点击下载 找到老一点的,我们找3.5.7 in the archive 点击 然后这里找到3.5.7这一个 然后下载这个-bin.tar.gz这个...

RTMP的工作原理及优缺点

一.什么是RTMP?RTMP(Real-Time Messaging Protocol,实时消息传输协议)是一种用于低延迟、实时音视频和数据传输的双向互联网通信协议,由Macromedia(后被Adobe收购)开发。RTMP的工作原理是&#…...

【数据结构与算法】——第八章:排序

文章目录1、基本概念1.1 什么是排序1.2 排序算法的稳定性1.3 排序算法的分类1.4 内排序的方法2、插入排序2.1 直接插入排序2.2 直接插入排序2.3 希尔排序3、交换排序3.1 冒泡排序3.2 快速排序4、选择排序4.1 简单选择排序4.2 树形选择排序4.3 堆排序4.4 二路归并排序5、基数排序…...

在linux中web服务器的搭建与配置

以下涉及到的linux命令大全查阅 https://www.runoob.com/linux/linux-command-manual.htmlvim命令查阅 https://www.runoob.com/linux/linux-vim.htmlscp命令https://www.runoob.com/linux/linux-comm-scp.html首先要有一个请求的服务地址用ssh 进入到linux系统中ssh 请求的服务…...

《Python机器学习》基础代码2

👂 逝年 - 夏小虎 - 单曲 - 网易云音乐 目录 👊Matplotlib综合应用:空气质量监测数据的图形化展示 🌼1,AQI时序变化特点 🌼2,AQI分布特征 相关性分析 🌼3,优化图形…...

如何基于MLServer构建Python机器学习服务

文章目录前言一、数据集二、训练 Scikit-learn 模型三、基于MLSever构建Scikit-learn服务四、测试模型五、训练 XGBoost 模型六、服务多个模型七、测试多个模型的准确性总结参考前言 在过去我们训练模型,往往通过编写flask代码或者容器化我们的模型并在docker中运行…...

9.1 IGMPv1实验

9.4.1 IGMPv1 实验目的 熟悉IGMPv1的应用场景掌握IGMPv1的配置方法实验拓扑 实验拓扑如图9-7所示: 图9-7:IGMPv1 实验步骤 (1)配置IP地址 MCS1的配置 MCS1的IP地址配置如图9-8所示: 图9-8:MCS1的配置 …...

软考高级系统分析师系列论文之十:论实时控制系统与企业信息系统的集成在通信业应用

软考高级系统分析师系列论文之十:论实时控制系统与企业信息系统的集成在通信业应用 一、摘要二、正文三、总结一、摘要 近年来,在应用需求的强大驱动下,我国通信业有了长足的进步。现有通信行业中的许多企业单位,如电信公司或移动集团,其信息系统的主要特征之一是对线路的…...

NIO与零拷贝

目录 一、零拷贝的基本介绍 二、传统IO数据读写的劣势 三、mmap优化 四、sendFile优化 五、 mmap 和 sendFile 的区别 六、零拷贝实战 6.1 传统IO 6.2 NIO中的零拷贝 6.3 运行结果 一、零拷贝的基本介绍 零拷贝是网络编程的关键,很多性能优化都离不开。 在…...

【PAT甲级题解记录】1151 LCA in a Binary Tree (30 分)

【PAT甲级题解记录】1151 LCA in a Binary Tree (30 分) 前言 Problem:1151 LCA in a Binary Tree (30 分) Tags:树的遍历 并查集 LCA Difficulty:剧情模式 想流点汗 想流点血 死而无憾 Address:1151 LCA in a Binary Tree (30 分…...

Android 获取手机语言环境 区分简体和繁体,香港,澳门,台湾繁体

安卓和IOS 系统语言都是准守:ISO 639 ISO 代码表IOS:plus.os.language ios正常,安卓下简体和繁体语言,都是zh安卓获取系统语言方法:Locale.getDefault().language手机切换到繁体(台湾,香港&…...

一文搞懂Python时间序列

Python时间序列1. datetime模块1.1 datetime对象1.2 字符串和datatime的相互转换2. 时间序列基础3. 重采样及频率转换4. 时间序列可视化5. 窗口函数5.1 移动窗口函数5.2 指数加权函数5.3 二元移动窗口函数时间序列(Time Series)是一种重要的结构化数据形…...

GeoServer发布数据进阶

GeoServer发布数据进阶 GeoServer介绍 GeoServer是用于共享地理空间数据的开源服务器。 它专为交互操作性而设计,使用开放标准发布来自任何主要空间数据源的数据。 GeoServer实现了行业标准的 OGC 协议,例如网络要素服务 (WFS)…...

Docker离线部署

Docker离线部署 目录 1、需求说明 2、下载docker安装包 3、上传docker安装包 4、解压docker安装包 5、解压的docker文件夹全部移动至/usr/bin目录 6、将docker注册为系统服务 7、重启生效 8、设置开机自启 9、查看docker版本信息 1、需求说明 大部份公司为了服务安全…...

《数据库系统概论》学习笔记——第七章 数据库设计

教材为数据库系统概论第五版(王珊) 这一章概念比较多。最重点就是7.4节。 7.1 数据库设计概述 数据库设计定义: 数据库设计是指对于一个给定的应用环境,构造(设计)优化的数据库逻辑模式和物理结构&#x…...

【Datawhale图机器学习】半监督节点分类:标签传播和消息传递

半监督节点分类:标签传播和消息传递 半监督节点分类问题的常见解决方法: 特征工程图嵌入表示学习标签传播图神经网络 基于“物以类聚,人以群分”的Homophily假设,讲解了Label Propagation、Relational Classification&#xff…...

【分布式缓存学习篇】Redis数据结构

一、Redis的数据结构 二、String 数据结构 2.1 字符串常用操作 //存入字符串键值对 SET key value //批量存储字符串键值对 MSET key value [key value ...] //存入一个不存在的字符串键值对 SETNX key value //获取一个字符串键值 GET ke…...

【跟着ChatGPT学深度学习】ChatGPT带我入门NLP

❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…...

龙虎榜——20250610

上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...