使用Go构建一个Postgres流平台
使用 Go 通道从拉推模型转向更高效的流方法。这通过重叠拉取和推送阶段来提高性能,减少总体处理时间和延迟。
Go通道提供数据同步、资源管理和并发处理。它们允许 goroutine 安全地通信和交换数据。这些源实现了每秒 10-12k 事务的吞吐量,最小延迟为 1-5 秒,比之前使用拉推的 30 秒有了显着改进。
在PeerDB,我们的使命是创建一个 Postgres 优先的数据移动平台,使数据从 Postgres 流式传输到数据仓库、队列和存储变得快速、简单。我们的工程重点围绕数据移动速度提高 10 倍、成本效益和硬件优化。
在这篇博文中,我们将深入探讨最近从拉推模型到使用Go goroutine 的更高效流媒体方法的转变。让我们探讨为什么流式传输至关重要,以及这种变化如何显着提高性能。
Pull-and-Push推拉模型
拉推模式:将行提取到内存中的一个数组,然后将它们移动到目标位置。
虽然这种方法在批量较小的情况下效果不错,但在批量较大的情况下就出现了问题。
具体来说,我们无法在拉取的同时并行推送,导致管道效率不高。在我们的典型设置中,拉取和推送时间的比例为 60-40。
_// sync all the records normally, then apply the schema delta after NormalizeFlow._type RecordsWithTableSchemaDelta struct {
RecordBatch *RecordBatch // wrapper for "Records []Record" TableSchemaDeltas []*protos.TableSchemaDelta
RelationMessageMapping RelationMessageMapping
}
转向流式处理
我们的新方法是在从 PostgreSQL 提取数据的同时,分批缓冲并并发地将数据推送到目标(如 Snowflake)。这种流水线式数据传输具有显著优势:
- 提高效率:管道化允许我们重叠拉取和推送阶段,从而减少整体处理时间。
- 减少延迟:使用流水线技术,数据可以更快地到达目的地,从而提高整个系统的响应速度。
这是更改后的共享结构:
type CDCRecordStream struct {
// Records are a list of json objects. records chan Record // Schema changes from the slot SchemaDeltas chan *protos.TableSchemaDelta // Relation message mapping RelationMessageMapping chan *RelationMessageMapping // ... other fields
}
利用 Go Channels 进行流式传输
Go Channels 用于实现 Go 程序中 goroutine(并发函数)之间的通信和同步。通道允许一个 goroutine 向另一个 goroutine 发送数据,并提供一种安全的信息交换方式。以下是 Go 通道提供的一些好处:
- 数据同步: Go 通道提供对数据同步的精细控制,防止竞争条件并确保数据流经系统时的一致性。
- 资源管理: Go 通道的满负荷阻塞行为可防止数据过载,降低内存不足 (OOM) 错误的风险并确保稳定性。
- 并发处理: Go 通道可实现高效的并发数据处理,优化资源利用率并在数据检索、转换和插入方面实现高吞吐量。
- 错误处理:使用select 语句的内置错误处理机制提高了系统的健壮性,使我们能够优雅地响应异常并保持可靠性。[这](https://github.com/PeerDB-io/peerdb/blob/57abb885e3e989119bff723340f9d648f5c369bd/flow/connectors/postgres/qrep_query_executor.goL184)是我们在 Go 通道中处理错误的实现
- 与 Postgres 逻辑复制的协同:我们使用逻辑复制槽从 Postgres 管理 CDC。[START_REPLICATION](https://www.postgresql.org/docs/current/protocol-replication.htmlPROTOCOL-REPLICATION-START-REPLICATION)将给定 wal 位置处的 Postgres 更改传输到我们的缓冲区通道中,并等待我们请求下一个更改。Go 通道提供的反压机制和 START_REPLICATION 的流功能齐头并进,通过控制内存利用率来确保弹性。
在最初的规模测试中,我们实现了:
-
吞吐量:每秒 10-12k 事务 (TPS)
-
最小延迟: 1-5 秒
前完成类似任务大约需要 30 秒。
https://www.jdon.com/69634.html
相关文章:
使用Go构建一个Postgres流平台
使用 Go 通道从拉推模型转向更高效的流方法。这通过重叠拉取和推送阶段来提高性能,减少总体处理时间和延迟。 Go通道提供数据同步、资源管理和并发处理。它们允许 goroutine 安全地通信和交换数据。这些源实现了每秒 10-12k 事务的吞吐量,最小延迟为 1-…...
QT基础与细节理解
前言 本博客旨在记录QT学习过程中的一些细节知识理解,由于问题的产生并非成体系,所以前期的记录可能会无序一些。烦请读者参阅目录进行快速的问题定位与跳转 QT基础与细节理解 前言正文部分QT基础1:正确理解: QWidget(parent), ui(new Ui::u…...
【MySQL数据库】 六
本文主要介绍了数据库原理中数据库索引和事务相关概念. 一.索引 在查询表的时候,最基本的方式就是遍历表,一条一条筛选 . 因此,就可以给这个表建立索引,来提高查找的速度 比如,按照id建立索引 在数据库上额外搞一个空间维护一些id 相关的信息, id:1 表的某个位置 id:2 …...
微信总提示空间不足怎么办?三个方法随心选!
微信显示空间不足会给用户带来很多困扰,比如影响手机的正常使用,占用大量存储空间,导致手机运行缓慢,没法分享图片和视频,影响我们的社交交流。下面提供了一些简单实用的方法。 方法一:清理微信缓存 1、打…...
C语言每日一题(27)链表中倒数第k个结点
牛客网 链表中倒数第k个结点 题目描述 描述 输入一个链表,输出该链表中倒数第k个结点。 思路分析 这是一道经典的快慢指针题,fast和slow最开始都指向头结点,对于输入值k,先让快指针fast先走k步,之后再让两个指针一…...
pdf转word
1、pip install pdf2docx 2、 from pdf2docx import Converterpdf_filerH:\测试.pdf docx_filerH:\测试_word.docxcvConverter(pdf_file) cv.convert(docx_file,start0,endNone) cv.close()会根据H目录中的pdf,在本目录自动生成相应的word...
LeetCode热题100——二叉树
二叉树 1. 二叉树中序遍历 1. 二叉树中序遍历...
【Linux】文件重定向以及一切皆文件
文章目录 前言一、重定向二、系统调用dup2三、重定向的使用四、一切皆文件 前言 Linux进程默认情况下会有3个缺省打开的文件描述符,分别是标准输入0, 标准输出1, 标准错误2, 0,1,2对应的物理设备一般是:键盘ÿ…...
Go进阶之rpc和grpc
文章目录 Go环境安装1)windows2)linux go语言编码规范1.1 包名:package1.2 ⽂件名1.3 结构体命名1.4 接⼝命名1.5 变量命名1.6 常量命名2.1 包注释2.2 结构(接⼝)注释2.3 函数(⽅法)注释2.4 代码…...
润和软件HopeStage与奇安信网神终端安全管理系统、可信浏览器完成产品兼容性互认证
近日,江苏润和软件股份有限公司(以下简称“润和软件”)HopeStage 操作系统与奇安信网神信息技术(北京)股份有限公司(以下简称“奇安信”)终端安全管理系统、可信浏览器完成产品兼容性测试。 测试…...
模态对话框和非模态对话框
创建到堆区这样非模态对话框就不会一闪而过 .exec使程序进入阻塞状态 ()[]{}lambda表达式 55号属性可以在对话框关闭的时候将堆区的内存释放掉从而防止内存泄露...
【算法与数据结构】39、LeetCode组合总和
文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析:这道题当中数字可以多次使用,那么我们在递归语句当中不能直接找下一个candidate的元素&…...
行政大厅满意度调查内容
行政大厅满意度调查的内容应该涵盖各个方面,以全面了解公众对行政大厅服务的满意度和意见。以下是可能包含在行政大厅满意度调查中的内容: 服务态度: 行政大厅工作人员的友好程度和专业水平。是否受到尊重和礼貌的待遇。 办事效率…...
WordPress页脚配置备案号
进入后台管理页面 后台管理页面地址一般是:域名/wp-admin 在指定位置加入代码 点击外观 -> 主题文件编辑器 在右侧的文件中选择 footer.php,[注意:上方的主题需要是你自己选择的对应的主题]在 </footer>标签这一行的上一行中加入代码 <di…...
时间序列预测模型实战案例(十)(个人创新模型)通过堆叠CNN、GRU、LSTM实现多元预测和单元预测
本文介绍 本篇博客为大家讲解的是通过组堆叠CNN、GRU、LSTM个数,建立多元预测和单元预测的时间序列预测模型,其效果要比单用GRU、LSTM效果好的多,其结合了CNN的特征提取功能、GRU和LSTM用于处理数据中的时间依赖关系的功能。通过将它们组合在…...
【有源码】基于uniapp的农场管理小程序springboot基于微信小程序的农场检测系统(源码 调试 lw 开题报告ppt)
💕💕作者:计算机源码社 💕💕个人简介:本人七年开发经验,擅长Java、Python、PHP、.NET、微信小程序、爬虫、大数据等,大家有这一块的问题可以一起交流! 💕&…...
商城系统分布式下单
一、锁定库存的sql select * from ware where id{id} and total-lock>0 update ware set locklock{num} where id{id} and total-lock>{num} 二、下单服务要用分布式事务,因为seat的二阶段提交要说很多资源,会造成处理变成串行化,高并发…...
Java自学第5课:Java web开发环境概述,更换Eclipse版本
1 Java web开发环境 前面我们讲了java基本开发环境,但最终还是要转到web来的,先看下怎么搭建开发环境。 这个图就是大概讲了下开发和应用环境,其实很简单,对于一台裸机,win7 系统的,首先第1步,…...
[网鼎杯 2020 青龙组]AreUSerialz
[网鼎杯 2020 青龙组]AreUSerialz <?phpinclude("flag.php");highlight_file(__FILE__);class FileHandler {protected $op;protected $filename;protected $content;function __construct() {$op "1";$filename "/tmp/tmpfile";$content…...
使用Kotlin与Unirest库抓取音频文件的技术实践
目录 摘要 一、Kotlin与Unirest库概述 二、使用Kotlin和Unirest抓取音频文件 1、添加Unirest依赖 2、发送HTTP请求获取音频文件 3、保存音频文件 三、完整代码示例 四、注意事项 结论 摘要 本文详细阐述了如何使用Kotlin编程语言与Unirest库抓取网络上的音频文件。首…...
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
ui框架-文件列表展示
ui框架-文件列表展示 介绍 UI框架的文件列表展示组件,可以展示文件夹,支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项,适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...
ArcPy扩展模块的使用(3)
管理工程项目 arcpy.mp模块允许用户管理布局、地图、报表、文件夹连接、视图等工程项目。例如,可以更新、修复或替换图层数据源,修改图层的符号系统,甚至自动在线执行共享要托管在组织中的工程项。 以下代码展示了如何更新图层的数据源&…...
Pandas 可视化集成:数据科学家的高效绘图指南
为什么选择 Pandas 进行数据可视化? 在数据科学和分析领域,可视化是理解数据、发现模式和传达见解的关键步骤。Python 生态系统提供了多种可视化工具,如 Matplotlib、Seaborn、Plotly 等,但 Pandas 内置的可视化功能因其与数据结…...
【Linux】使用1Panel 面板让服务器定时自动执行任务
服务器就是一台24小时开机的主机,相比自己家中不定时开关机的主机更适合完成定时任务,例如下载资源、备份上传,或者登录某个网站执行一些操作,只需要编写 脚本,然后让服务器定时来执行这个脚本就可以。 有很多方法实现…...
