当前位置: 首页 > news >正文

pytorch直线拟合

目录

1、数据分析

2、pytorch直线拟合


1、数据分析

直线拟合的前提条件通常包括以下几点:

存在线性关系:这是进行直线拟合的基础,数据点之间应该存在一种线性关系,即数据的分布可以用直线来近似描述。这种线性关系可以是数据点在直角坐标系上的分布趋势,也可以是通过实验或观测得到的数据点之间的关系。

数据点之间的误差是随机的:误差应该是随机的,没有任何系统性的偏差,并且符合随机误差的统计规律。这意味着数据点在拟合直线周围的分布应该是随机的,而不是受到某种特定的规律或趋势的影响。

直线应符合数据点的总体趋势:在拟合直线时,应该尽可能地符合数据点的总体趋势,而不是被一些异常值所影响。如果存在一些异常值,它们不应该对拟合结果产生过大的影响。

数据点的数量应该足够多:在进行直线拟合时,需要足够多的数据点来保证拟合结果的准确性和可靠性。通常来说,数据点的数量应该足够多,以便涵盖各种情况,并且能够反映出数据的真实分布情况。

数据的观测或实验过程是可靠的:数据的观测或实验过程应该是可靠的,这意味着数据的测量值应该是准确的,并且没有受到某些特定因素的影响。如果数据的观测或实验过程存在偏差或误差,那么直线拟合的结果也可能受到影响。

从散点图看出,数据具有明显的线性关系​,本例不过多讨论数据是满足直线拟合的其它条件。

import torch
import matplotlib.pyplot as plt
x=torch.Tensor([1.4,5,11,16,21])
y=torch.Tensor([14.4,29.6,62,85,113.4])
plt.scatter(x.numpy(),y.numpy())
plt.show()

2、pytorch直线拟合

基于梯度下降法实现直线拟合。训练过程实际上是一种批量梯度下降(Batch Gradient Descent),这是因为每次更新参数时都使用了所有的数据。另外,学习率 learning_rate 和训练轮数 epochs 是可以调整的超参数,对模型的训练效果有很大影响。

import torch
import matplotlib.pyplot as plt
def Produce_X(x):x0=torch.ones(x.numpy().size)X=torch.stack((x,x0),dim=1)return X
def train(epochs=1,learning_rate=0.01):for epoch in range(epochs):output=inputs.mv(w)loss=(output-target).pow(2).sum()loss.backward()w.data-=learning_rate*w.gradw.grad.zero_()if epoch%80==0:draw(output,loss)return w,loss
def draw(output,loss):plt.cla()plt.scatter(x.numpy(), y.numpy())plt.plot(x.numpy(),output.data.numpy(),'r-',lw=5)plt.text(5,20,'loss=%s' % (loss.item()),fontdict={'size':20,'color':'red'})plt.pause(0.005)
​
if __name__ == "__main__":x = torch.Tensor([1.4, 5, 11, 16, 21])y = torch.Tensor([14.4, 29.6, 62, 85.5, 113.4])X = Produce_X(x)inputs = Xtarget = yw = torch.rand(2, requires_grad=True)w,loss=train(10000,learning_rate=1e-4)print("final loss:",loss.item())print("weigths:",w.data)plt.show()
​

final loss: 8.216197967529297

weigths: tensor([5.0817, 5.6201])

相关文章:

pytorch直线拟合

目录 1、数据分析 2、pytorch直线拟合 1、数据分析 直线拟合的前提条件通常包括以下几点: 存在线性关系:这是进行直线拟合的基础,数据点之间应该存在一种线性关系,即数据的分布可以用直线来近似描述。这种线性关系可以是数据点…...

相机传感器

相机的传感器大小通常用英寸(1英寸2.54厘米)来表示。例如:全画幅相机的传感器大小为:36mm*24mm,称为 35mm全画幅。 几分之一英寸 所谓的 1/2.7,1/2.5等等,里面的分子1是一个标准,分…...

大语言模型的关键技术

大语言模型的关键技术: 经过漫长的发展,LLM 进化到了当前的状态——通用且有能力的学习者。在这个过程中,人们提出了许多重要的技术,大大提升了 LLM 的能力。在此,我们简要列举了几种重要的技术,这些技术&a…...

uniapp使用vur-cli新建项目并打包

新建项目 npm install -g vue/cli vue create -p dcloudio/uni-preset-vue my-project选择默认模板npm run dev:h5 运行 安装sass和uview &#xff08;npm安装失败&#xff09; bug&#xff1a;使用uni.scss中的变量或样式&#xff0c;<style lang"scss"> 必…...

后台管理系统解决方案-中大型-Vben Admin

后台管理系统解决方案-中大型-Vben Admin 官网 Vben Admin 在线演示 Vben Admin 为什么选择它 github现有20K星&#xff0c;并且它有个可视化生成表单&#xff0c;我很喜欢 快速开始 # 拉取代码 git clone https://github.com/vbenjs/vue-vben-admin-doc# 安装依赖 yarn#…...

通俗理解repartition和coalesce区别

官方的解释 reparation 返回一个具有恰好numPartitions分区的新RDD。 可以增加或减少此RDD中的并行级别。在内部,reparation会使用shuffle来重新分发的数据。 如果要减少此RDD中的分区数量,请考虑使用coalesce,这样可以避免执行shuffle。 coalesce 返回一个新的RDD,该RDD被…...

优雅设计之美:实现Vue应用程序的时尚布局

本文为翻译文章&#xff0c;原文链接&#xff1a; ** https://fadamakis.com/clean-layout-architecture-for-vue-applications-a738201a2a1e 前言 页面布局是减少代码重复和创建可维护且具有专业外观的应用程序的基本模式。如果使用的是Nuxt&#xff0c;则可以提供开箱即用…...

05预测识别-依托YOLO V8进行训练模型的识别——对视频中的目标进行跟踪统计

上文中详细介绍了如何对视频进行抽帧,并对帧的图像进行目标识别。但在日常工作中,我们也会遇到需要对目标进行跟踪统计的情况,比如我们需要连续统计某一类目标有多少个的时候,如果单纯从帧中抽取图像的话,系统将无法判断是否为同一目标,从而造成目标数量统计的重复,导致…...

Android Studio(意图Intent)

前言 意图的作用&#xff1a;页面的跳转&#xff08;从一个页面跳转到另一个页面&#xff09;。 意图的创建&#xff1a;需要哪些参数&#xff1f;首先&#xff0c;从哪个页面跳转到哪个页面&#xff1b;其二&#xff0c;跳转到另一个页面需要携带数据吗。 下面介绍顺序&#x…...

Bean作用域

从笔者之前的博客&#xff0c;我们可以看出 Spring 是⽤来读取和存储 Bean&#xff0c;因此在 Spring 中 Bean 是最核⼼的操作 资源&#xff0c;所以接下来我们深⼊学习⼀下 Bean 对象&#xff1a;Bean作用域&#xff01; 限定程序中变量的可用范围叫做作用域&#xff01;或者…...

YOLOV5----修改损失函数-SE

主要修改yolo.py、yolov5s.yaml及添加SE.py 一、SE.py import numpy as np import torch from torch import nn from torch.nn import initclass SEAttention(nn.Module):def __init__(self, channel=512...

Mybatis(一)

1. Mybatis简介 MyBatis下载地址 1.1 MyBatis历史 MyBatis最初是Apache的一个开源项目iBatis, 2010年6月这个项目由Apache Software Foundation迁移到了Google Code。随着开发团队转投Google Code旗下&#xff0c;iBatis3.x正式更名为MyBatis。代码于2013年11月迁移到Github…...

使用Go构建一个Postgres流平台

使用 Go 通道从拉推模型转向更高效的流方法。这通过重叠拉取和推送阶段来提高性能&#xff0c;减少总体处理时间和延迟。 Go通道提供数据同步、资源管理和并发处理。它们允许 goroutine 安全地通信和交换数据。这些源实现了每秒 10-12k 事务的吞吐量&#xff0c;最小延迟为 1-…...

QT基础与细节理解

前言 本博客旨在记录QT学习过程中的一些细节知识理解&#xff0c;由于问题的产生并非成体系&#xff0c;所以前期的记录可能会无序一些。烦请读者参阅目录进行快速的问题定位与跳转 QT基础与细节理解 前言正文部分QT基础1&#xff1a;正确理解: QWidget(parent), ui(new Ui::u…...

【MySQL数据库】 六

本文主要介绍了数据库原理中数据库索引和事务相关概念. 一.索引 在查询表的时候,最基本的方式就是遍历表,一条一条筛选 . 因此,就可以给这个表建立索引,来提高查找的速度 比如,按照id建立索引 在数据库上额外搞一个空间维护一些id 相关的信息, id:1 表的某个位置 id:2 …...

微信总提示空间不足怎么办?三个方法随心选!

微信显示空间不足会给用户带来很多困扰&#xff0c;比如影响手机的正常使用&#xff0c;占用大量存储空间&#xff0c;导致手机运行缓慢&#xff0c;没法分享图片和视频&#xff0c;影响我们的社交交流。下面提供了一些简单实用的方法。 方法一&#xff1a;清理微信缓存 1、打…...

C语言每日一题(27)链表中倒数第k个结点

牛客网 链表中倒数第k个结点 题目描述 描述 输入一个链表&#xff0c;输出该链表中倒数第k个结点。 思路分析 这是一道经典的快慢指针题&#xff0c;fast和slow最开始都指向头结点&#xff0c;对于输入值k&#xff0c;先让快指针fast先走k步&#xff0c;之后再让两个指针一…...

pdf转word

1、pip install pdf2docx 2、 from pdf2docx import Converterpdf_filerH:\测试.pdf docx_filerH:\测试_word.docxcvConverter(pdf_file) cv.convert(docx_file,start0,endNone) cv.close()会根据H目录中的pdf,在本目录自动生成相应的word...

LeetCode热题100——二叉树

二叉树 1. 二叉树中序遍历 1. 二叉树中序遍历...

【Linux】文件重定向以及一切皆文件

文章目录 前言一、重定向二、系统调用dup2三、重定向的使用四、一切皆文件 前言 Linux进程默认情况下会有3个缺省打开的文件描述符&#xff0c;分别是标准输入0&#xff0c; 标准输出1&#xff0c; 标准错误2&#xff0c; 0,1,2对应的物理设备一般是&#xff1a;键盘&#xff…...

手机上网可以固定ip地址吗?详细解析

在移动互联网时代&#xff0c;手机已成为人们日常上网的主要设备之一。无论是工作、学习还是娱乐&#xff0c;稳定的网络连接都至关重要。许多用户对IP地址的概念有所了解&#xff0c;尤其是固定IP地址的需求。那么&#xff0c;手机上网能否固定IP地址&#xff1f;又该如何实现…...

中国移动6周年!

基站超过250万个 网络规模全球最大、质量最优 覆盖全国96%人口 在全国率先实现乡乡双千兆 服务用户超5.7亿 网络上下行均值接入速率均居行业首位 行业应用快速推广&#xff0c;数量超5万个 3CC、RedCap、通感一体、 无线AI改造等技术成熟商用 客户品牌持续升级&#x…...

LeetCode 239. 滑动窗口最大值(单调队列)

题目传送门&#xff1a;239. 滑动窗口最大值 - 力扣&#xff08;LeetCode&#xff09; 题意就是求每个窗口内的最大值&#xff0c;返回一个最大值的数组&#xff0c;滑动窗口的最值问题。 做法&#xff1a;维护一个单调递减队列&#xff0c;队头为当前窗口的最大值。 设计的…...

在CSDN发布AWS Proton解决方案:实现云原生应用的标准化部署

引言&#xff1a;云原生时代的部署挑战 在云原生应用开发中&#xff0c;基础设施管理的复杂性已成为团队面临的核心挑战。随着微服务架构的普及&#xff0c;每个服务可能包含数十个AWS资源&#xff08;如Lambda、API Gateway、ECS集群等&#xff09;&#xff0c;传统的手动配置…...

大语言模型评测体系全解析(下篇):工具链、学术前沿与实战策略

文章目录 一、评测工具链&#xff1a;从手工测试到自动化工程的效率革命&#xff08;一&#xff09;OpenCompass&#xff1a;开源评测框架的生态构建1. 技术架构&#xff1a;三层架构实现评测自动化2. 开发者赋能&#xff1a;从入门到进阶的工具矩阵 &#xff08;二&#xff09…...

JVM 内存溢出 详解

内存溢出 内存溢出指的是内存中某一块区域的使用量超过了允许使用的最大值&#xff0c;从而使用内存时因空间不足而失败&#xff0c;虚拟机一般会抛出指定的错误。 在Java虚拟机中&#xff0c;只有程序计数器不会出现内存溢出的情况&#xff0c;因为每个线程的程序计数器只保…...

Excel-vlookup -多条件匹配,返回指定列处的值

前提&#xff1a;先了解vlookup 的简单使用&#xff0c; 参照&#xff1a;https://blog.csdn.net/yanweijie0317/article/details/144886106?spm1011.2124.3001.6209 要求&#xff1a;按照Sheet0的B列和I列&#xff0c;在Sheet1中查找H列。 函数&#xff1a; VLOOKUP(B509&a…...

入门AJAX——XMLHttpRequest(Post)

一、前言 在上篇文章中&#xff0c;我们已经介绍了 HMLHttpRequest 的GET 请求的基本用法&#xff0c;并基于我提供的接口练习了两个简单的例子。如果你还没有看过第一篇文章&#xff0c;强烈建议你在学习完上篇文章后再学习本篇文章&#xff1a; &#x1f517;入门AJAX——XM…...

【C】-递归

1、递归概念 递归&#xff08;Recursion&#xff09;是编程中一种重要的解决问题的方法&#xff0c;其核心思想是函数通过调用自身来解决规模更小的子问题&#xff0c;直到达到最小的、可以直接解决的基准情形&#xff08;Base Case&#xff09;。 核心&#xff1a;自己调用…...

OpenBayes 一周速览|TransPixeler 实现透明化文本到视频生成;统一图像定制框架 DreamO 上线,一键处理多种图像生成任务

公共资源速递 2 个公共数据集&#xff1a; * s1K-1.1 数学推理数据集 * HPA 人类蛋白质图谱数据集 3 个公共模型&#xff1a; * MedGemma-4B-IT * Devstral-Small-2505 * DeepSeek-Prover-V2-7B 12 个公共教程&#xff1a; 视频生成 * 2 语音交互 * 3 代码生成 * 3 …...