当前位置: 首页 > news >正文

kafka微服务学习

消息中间件对比:
1、吞吐、可靠性、性能
在这里插入图片描述

Kafka安装

Kafka对于zookeeper是强依赖,保存kafka相关的节点数据,所以安装Kafka之前必须先安装zookeeper

  • Docker安装zookeeper

下载镜像:

docker pull zookeeper:3.4.14

创建容器

docker run -d --name zookeeper -p 2181:2181 zookeeper:3.4.14
  • Docker安装kafka

下载镜像:

docker pull wurstmeister/kafka:2.12-2.3.1

创建容器

docker run -d --name kafka \
--env KAFKA_ADVERTISED_HOST_NAME=192.168.200.130 \
--env KAFKA_ZOOKEEPER_CONNECT=192.168.200.130:2181 \
--env KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://192.168.200.130:9092 \
--env KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:9092 \
--env KAFKA_HEAP_OPTS="-Xmx256M -Xms256M" \
--net=host wurstmeister/kafka:2.12-2.3.1

kafka入门

  • 生产者发送消息,多个消费者只能有一个消费者接收到消息
  • 生产者发送消息,多个消费者都可以接收到消息

(1)创建kafka-demo项目,导入依赖

<dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId>
</dependency>

(2)生产者发送消息

package com.heima.kafka.sample;import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;import java.util.Properties;/*** 生产者*/
public class ProducerQuickStart {public static void main(String[] args) {//1.kafka的配置信息Properties properties = new Properties();//kafka的连接地址properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.200.130:9092");//发送失败,失败的重试次数properties.put(ProducerConfig.RETRIES_CONFIG,5);//消息key的序列化器properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");//消息value的序列化器properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");//2.生产者对象KafkaProducer<String,String> producer = new KafkaProducer<String, String>(properties);//封装发送的消息ProducerRecord<String,String> record = new ProducerRecord<String, String>("itheima-topic","100001","hello kafka");//3.发送消息producer.send(record);//4.关闭消息通道,必须关闭,否则消息发送不成功producer.close();}}

(3)消费者接收消息

package com.heima.kafka.sample;import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;import java.time.Duration;
import java.util.Collections;
import java.util.Properties;/*** 消费者*/
public class ConsumerQuickStart {public static void main(String[] args) {//1.添加kafka的配置信息Properties properties = new Properties();//kafka的连接地址properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.200.130:9092");//消费者组properties.put(ConsumerConfig.GROUP_ID_CONFIG, "group2");//消息的反序列化器properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");//2.消费者对象KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(properties);//3.订阅主题consumer.subscribe(Collections.singletonList("itheima-topic"));//当前线程一直处于监听状态while (true) {//4.获取消息ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {System.out.println(consumerRecord.key());System.out.println(consumerRecord.value());}}}}

kafka高可用设计

1、设计集群模式:

Kafka的服务器端由被称为 Broker 的服务进程构成,即一个 Kafka 集群由多个Broker 组成。当一个机器宕机了,另外一个机器就会替补山
在这里插入图片描述

2、备份机制:

Kafka定义了两类副本

  1. 领导者副本(Leader Replica)
  2. 追随者副本 (Follower Replica)
    追随者副本分为两类:
    1、一种是ISR副本,同步保存
    2、普通的副本,异步保存
    出现主节点宕机,会先选ISR副本中的一个成为新的主节点,保证数据一致性,没有ISR节点,再从普通节点中挑选
    针对全部节点宕机的情况,有两种策略:
    1、等待第一个ISR副本,保证了数据的尽可能一致
    2、等待一个复活的追随者,无论是ISR还是普通,提高系统的高可用性。

kafka生产者详解

1发送类型

  • 同步发送

    使用send()方法发送,它会返回一个Future对象,调用get()方法进行等待,就可以知道消息是否发送成功

RecordMetadata recordMetadata = producer.send(kvProducerRecord).get();
System.out.println(recordMetadata.offset());
  • 异步发送

    调用send()方法,并指定一个回调函数,服务器在返回响应时调用函数

//异步消息发送
producer.send(kvProducerRecord, new Callback() {@Overridepublic void onCompletion(RecordMetadata recordMetadata, Exception e) {if(e != null){System.out.println("记录异常信息到日志表中");}System.out.println(recordMetadata.offset());}
});

2参数详解

  • ack

代码的配置方式:

//ack配置  消息确认机制
prop.put(ProducerConfig.ACKS_CONFIG,"all");

参数的选择说明

确认机制说明
acks=0生产者在成功写入消息之前不会等待任何来自服务器的响应,消息有丢失的风险,但是速度最快
acks=1(默认值)只要集群首领节点收到消息,生产者就会收到一个来自服务器的成功响应
acks=all只有当所有参与赋值的节点全部收到消息时,生产者才会收到一个来自服务器的成功响应
  • retries

生产者从服务器收到的错误有可能是临时性错误,在这种情况下,retries参数的值决定了生产者可以重发消息的次数,如果达到这个次数,生产者会放弃重试返回错误,默认情况下,生产者会在每次重试之间等待100ms

代码中配置方式:

//重试次数
prop.put(ProducerConfig.RETRIES_CONFIG,10);
  • 消息压缩

默认情况下, 消息发送时不会被压缩。

代码中配置方式:

//数据压缩
prop.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"lz4");
压缩算法说明
snappy占用较少的 CPU, 却能提供较好的性能和相当可观的压缩比, 如果看重性能和网络带宽,建议采用
lz4占用较少的 CPU, 压缩和解压缩速度较快,压缩比也很客观
gzip占用较多的 CPU,但会提供更高的压缩比,网络带宽有限,可以使用这种算法

使用压缩可以降低网络传输开销和存储开销,而这往往是向 Kafka 发送消息的瓶颈所在。

kafka消费者

消息的有序性

方法:一个topic分区能保证自己的数据是按照先后消费的,但是不能保证跨分区消息处理的先后顺序。我么只能使用一个分区,在单分区种,消息可以保证严格顺序消费

提交和偏移量

在这里插入图片描述
自动提交:
当enable.auto.commit被设置为true,提交方式就是让消费者自动提交偏移量,每隔5秒消费者会自动把从poll0方法接收的最大偏移量提交上去,这样只是记录了规定时间内的最大偏移量,其实与数据提交的偏移量存在偏差,因此可能会出现数据的重复提交或者丢失
手动提交
当enableauto.commit被设置为false可以有以下三种提交方式

  • 提交当前偏移量(同步提交)
  • 异步提交
  • 同步和异步组合提交

同步提交:commitSync()方法会一直尝试直至提交成功,如果提交失败也可以记录到错误日志里。

while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.println(record.value());System.out.println(record.key());try {consumer.commitSync();//同步提交当前最新的偏移量}catch (CommitFailedException e){System.out.println("记录提交失败的异常:"+e);}}
}

异步提交:手动提交有一个缺点,那就是当发起提交调用时应用会阻塞。消息没有重试机制

while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.println(record.value());System.out.println(record.key());}consumer.commitAsync(new OffsetCommitCallback() {@Overridepublic void onComplete(Map<TopicPartition, OffsetAndMetadata> map, Exception e) {if(e!=null){System.out.println("记录错误的提交偏移量:"+ map+",异常信息"+e);}}});
}

同步和异步组合提交

异步提交也有个缺点,那就是如果服务器返回提交失败,异步提交不会进行重试。相比较起来,同步提交会进行重试直到成功或者最后抛出异常给应用。异步提交没有实现重试是因为,如果同时存在多个异步提交,进行重试可能会导致位移覆盖

举个例子,假如我们发起了一个异步提交commitA,此时的提交位移为2000,随后又发起了一个异步提交commitB且位移为3000;commitA提交失败但commitB提交成功,此时commitA进行重试并成功的话,会将实际上将已经提交的位移从3000回滚到2000,导致消息重复消费。

try {while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.println(record.value());System.out.println(record.key());}consumer.commitAsync();}
}catch (Exception e){+e.printStackTrace();System.out.println("记录错误信息:"+e);
}finally {try {consumer.commitSync();}finally {consumer.close();}
}

springboot整合kafka

1、在父类中的pop文件中导入依赖包

```xml
<!-- kafkfa -->
<dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId>
</dependency>
<dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId>
</dependency>

2、在需要用到kafka的微服务的naco中分别配置生产者和消费者配置

spring:kafka:bootstrap-servers: 192.168.200.130:9092producer:retries: 10key-serializer: org.apache.kafka.common.serialization.StringSerializervalue-serializer: org.apache.kafka.common.serialization.StringSerializer
spring:kafka:bootstrap-servers: 192.168.200.130:9092consumer:group-id: ${spring.application.name}key-deserializer: org.apache.kafka.common.serialization.StringDeserializervalue-deserializer: org.apache.kafka.common.serialization.StringDeserializer

传递消息为对象

目前springboot整合后的kafka,因为序列化器是StringSerializer,这个时候如果需要传递对象可以有两种方式

方式一:可以自定义序列化器,对象类型众多,这种方式通用性不强,本章节不介绍

方式二:可以把要传递的对象进行转json字符串,接收消息后再转为对象即可,本项目采用这种方式

  • 发送消息
@GetMapping("/hello")
public String hello(){User user = new User();user.setUsername("xiaowang");user.setAge(18);kafkaTemplate.send("user-topic", JSON.toJSONString(user));return "ok";
}
  • 接收消息
package com.heima.kafka.listener;import com.alibaba.fastjson.JSON;
import com.heima.kafka.pojo.User;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;@Component
public class HelloListener {@KafkaListener(topics = "user-topic")public void onMessage(String message){if(!StringUtils.isEmpty(message)){User user = JSON.parseObject(message, User.class);System.out.println(user);}}
}

相关文章:

kafka微服务学习

消息中间件对比&#xff1a; 1、吞吐、可靠性、性能 Kafka安装 Kafka对于zookeeper是强依赖&#xff0c;保存kafka相关的节点数据&#xff0c;所以安装Kafka之前必须先安装zookeeper Docker安装zookeeper 下载镜像&#xff1a; docker pull zookeeper:3.4.14创建容器 do…...

5G网络切片,到底是什么?

网络切片&#xff0c;是5G引入的一个全新概念。 一看到切片&#xff0c;首先想到的&#xff0c;必然是把一个完整的东西切成薄片。于是&#xff0c;切面包或者切西瓜这样的画面&#xff0c;映入脑海。 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; 然而…...

linux安装nodejs

写在前面 因为工作需要&#xff0c;需要使用到nodejs&#xff0c;所以这里简单记录下学习过程。 1&#xff1a;安装 wget https://nodejs.org/dist/v14.17.4/node-v14.17.4-linux-x64.tar.xz tar xf node-v14.17.4-linux-x64.tar.xz mkdir /usr/local/lib/node // 这一步骤根…...

第1天:Python基础语法(一)

** 1、Python简介 ** Python是一种高级、通用的编程语言&#xff0c;由Guido van Rossum于1989年创造。它被设计为易于阅读和理解&#xff0c;具有简洁而清晰的语法&#xff0c;使得初学者和专业开发人员都能够轻松上手。 Python拥有丰富的标准库&#xff0c;提供了广泛的功…...

ppt聚光灯效果

1.放入三张图片内容或其他 2.全选复制成图片 3.设置黑色矩形&#xff0c;透明度30% 4.粘贴复制后的图片&#xff0c;制定图层 5.插入椭圆&#xff0c;先选中矩形&#xff0c;再选中椭圆&#xff0c;点击绘图工具&#xff0c;选择相交即可&#xff08;关键&#xff09;...

图文解析 Nacos 配置中心的实现

目录 一、什么是 Nacos 二、配置中心的架构 三、Nacos 使用示例 &#xff08;一&#xff09;官方代码示例 &#xff08;二&#xff09;Properties 解读 &#xff08;三&#xff09;配置项的层级设计 &#xff08;四&#xff09;获取配置 &#xff08;五&#xff09;注册…...

P1918 保龄球

Portal. 记录每一个瓶子数对应的位置即可。 注意到值域很大&#xff08; a i ≤ 1 0 9 a_i\leq 10^9 ai​≤109&#xff09;&#xff0c;要用 map 存储。 #include <bits/stdc.h> using namespace std;map<int,int> p;int main() {int n;cin>>n;for(int i…...

SAP-PP-报错:工作中心 7333_JQ 工厂 7331 对任务清单类型 N 不存在

创建工艺路线时报错&#xff1a;工作中心 7333_JQ 工厂 7331 对任务清单类型 N 不存在&#xff0c; 这是因为在创建工作中心时未维护控制键值导致的...

MySQL -- 用户管理

MySQL – 用户管理 文章目录 MySQL -- 用户管理一、用户1.用户信息2.创建用户3.删除用户4.远端登录MySQL5.修改用户密码6.数据库的权限 一、用户 1.用户信息 MySQL中的用户&#xff0c;都存储在系统数据库mysql的user表中&#xff1a; host&#xff1a; 表示这个用户可以从…...

IOS浏览器不支持对element ui table的宽度设置百分比

IOS浏览器不支持对element ui table的宽度设置百分比 IOS浏览器会把百分号识别成px&#xff0c;所以我们可以根据屏幕宽度将百分比转换成px getColumnWidth(data) {const screenWidth window.innerWidth;const desiredPercentage data;const widthInPixels (screenWidth *…...

Vue+OpenLayers 创建地图并显示鼠标所在经纬度

1、效果 2、创建地图 本文用的是高德地图 页面 <div class"map" id"map"></div><div id"mouse-position" class"position_coordinate"></div>初始化地图 var gaodeLayer new TileLayer({title: "高德地…...

01-编码-H264编码原理

1.整体概念 编码的含义就是压缩,将摄像头采集的YUV或RGB数据压缩成H264。 压缩的过程就是去除信息冗余的过程,一般视频有如下的冗余信息。 (1)空间冗余:在同一个画面中,相邻的像素点之间的变化很小,因而可以用一个特定大小的矩阵来描述相邻的这些像素。 (2)时间冗余:…...

RxJava/RxAndroid的操作符使用(二)

文章目录 一、创建操作1、基本创建2、快速创建2.1 empty2.2 never2.3 error2.4 from2.5 just 3、定时与延时创建操作3.1 defer3.2 timer3.3 interval3.4 intervalRange3.5 range3.6 repeat 二、过滤操作1、skip/skipLast2、debounce3、distinct——去重4、elementAt——获取指定…...

【C语法学习】20 - 文件访问顺序

文章目录 0 前言1 文件位置指示符2 rewind()函数2.1 函数原型2.2 参数2.3 返回值2.4 使用说明 3 ftell()函数3.1 函数原型3.2 参数3.3 返回值 4 fseek()函数4.1 函数原型4.2 参数4.3 返回值 5 示例5.1 示例15.2 示例2 0 前言 C语言文件访问分为顺序文件访问和随机文件访问。 …...

Etcd 常用命令与备份恢复

1. etcd简介 官方网站&#xff1a;etcd.io 官方文档&#xff1a;etcd.io/docs/v3.5/op-guide/maintenance 官方硬件推荐&#xff1a;etcd.io/docs/v3.5/op-guide/hardware github地址&#xff1a;github.com/etcd-io/etcd etcd是CoreOS团队于2013年6月发起的开源项目&#xf…...

获取任意时间段内周、季度、半年的二级联动

#需求是获取两个时间内 年周 、年季度、年半年的二级联动# 找了半天也找不到什么有用的信息 就自己简单写了一个 思路是先获取年的列表再去嵌套查询 根据前端VUE提供的格式嵌套 public function getDate(){$leixing Request::param(leixing);$larr array(1,2,3,4);if(empty(…...

前端面试系列之工程化篇

如果对前端八股文感兴趣&#xff0c;可以留意公重号&#xff1a;码农补给站&#xff0c;总有你要的干货。 前端工程化 Webpack 概念 本质上&#xff0c;webpack 是一个用于现代 JavaScript 应用程序的静态模块打包工具。当 webpack 处理应用程序时&#xff0c;它会在内部从一个…...

京东按关键词搜索商品列表接口:竞品分析,商品管理,营销策略制定

京东搜索商品列表接口是京东开放平台提供的一种API接口&#xff0c;通过调用该接口&#xff0c;开发者可以获取京东平台上商品的列表数据&#xff0c;包括商品的标题、价格、库存、月销量、总销量、详情描述、图片等信息。 接口的主要作用包括&#xff1a; 市场调研&#xff…...

Microsoft Dynamics 365 CE 扩展定制 - 9. Dynamics 365扩展

在本章中,我们将介绍以下内容: Dynamics 365应用程序Dynamics 365通用数据服务构建Dynamics 365 PowerApp使用Flow在CDS和Dynamics 365之间移动数据从AppSource安装解决方案使用数据导出服务解决方案进行数据复制从CRM数据构建Power BI仪表板简介 多年来,Dynamics CRM已从一…...

多篇论文介绍-Wiou

论文地址 目录 https://arxiv.org/pdf/2301.10051.pdf 01 CIEFRNet&#xff1a;面向高速公路的抛洒物检测算法 02改进 YOLOv5 的 PDC 钻头复合片缺损识别 03 基于SimAM注意力机制的DCN-YOLOv5水下目标检测 04 基于改进YOLOv7-tiny 算法的输电线路螺栓缺销检测 05 基于改…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...

ArcPy扩展模块的使用(3)

管理工程项目 arcpy.mp模块允许用户管理布局、地图、报表、文件夹连接、视图等工程项目。例如&#xff0c;可以更新、修复或替换图层数据源&#xff0c;修改图层的符号系统&#xff0c;甚至自动在线执行共享要托管在组织中的工程项。 以下代码展示了如何更新图层的数据源&…...

Qt Quick Controls模块功能及架构

Qt Quick Controls是Qt Quick的一个附加模块&#xff0c;提供了一套用于构建完整用户界面的UI控件。在Qt 6.0中&#xff0c;这个模块经历了重大重构和改进。 一、主要功能和特点 1. 架构重构 完全重写了底层架构&#xff0c;与Qt Quick更紧密集成 移除了对Qt Widgets的依赖&…...