【模型推理优化学习笔记】CUDA加速矩阵乘计算
矩阵乘可以利用gpu多线程并行的特点进行加速计算,但是传统简单的方法需要多次读取数据到寄存器中,增加耗时,因此利用gpu的共享内存可以被一个block内的所有线程访问到的特性,结合tiling技术进行加速计算。
理论部分不解释了,网上有很多,关键在于网上很多利用共享内存计算的代码存在错误(大部分只有在设置blockDim.x == blockDim.y 的时候,凑巧能对齐index给出正确的结果,若这俩不等,结果就错了),这里给出一个修正的版本:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <assert.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"#define M 32
#define K 32
#define N 32void initial(float *array, int size)
{for (int i = 0; i < size; i++){array[i] = (float)(1);}
}void printMatrix(float *array, int row, int col)
{float *p = array;for (int y = 0; y < row; y++){for (int x = 0; x < col; x++){printf("%.2f ", p[x]);}p = p + col;printf("\n");}return;
}__global__ void multiplicateMatrixOnDevice(float *array_A, float *array_B, float *array_C, int M_p, int K_p, int N_p)
{int ix = threadIdx.x + blockDim.x*blockIdx.x;//row numberint iy = threadIdx.y + blockDim.y*blockIdx.y;//col numberif (ix < N_p && iy < M_p){float sum = 0;for (int k = 0; k < K_p; k++){sum += array_A[iy*K_p + k] * array_B[k*N_p + ix];}array_C[iy*N_p + ix] = sum;}
}// Compute C = A * B
// M, K, K, N, M, N
__global__ void matrixMultiplyShared(float *A, float *B, float *C,int numARows, int numAColumns, int numBRows, int numBColumns, int numCRows, int numCColumns)
{//@@ Insert code to implement matrix multiplication here//@@ You have to use shared memory for this MP// 1. 相比网上代码,修改这里的index__shared__ float sharedM[8][16]; __shared__ float sharedN[16][8]; int bx = blockIdx.x; int by = blockIdx.y; int tx = threadIdx.x; int ty = threadIdx.y; int row = by * blockDim.y + ty; int col = bx * blockDim.x + tx; float Csub = 0.0;// for (int i = 0; i < 2; ++i) for (int i = 0; i < (int)(ceil((float)numAColumns / blockDim.x)); i++){if (i*blockDim.x + tx < numAColumns && row < numARows)sharedM[ty][tx] = A[row*numAColumns + i*blockDim.x + tx];elsesharedM[ty][tx] = 0.0;// 2. 相比网上代码,修改这里的indexif (i*blockDim.x + tx < numBRows && col < numBColumns)sharedN[tx][ty] = B[(i*blockDim.x + tx)*numBColumns + col];elsesharedN[tx][ty] = 0.0;__syncthreads();// if (blockIdx.x == 0 && blockIdx.y == 1 && threadIdx.x == 0 && threadIdx.y ==0 ) {// printf("sharedM: \n");// for (int i = 0; i < 8; ++i) {// for (int j = 0; j < 16; ++j) {// printf("%f ", sharedM[i][j]);// }// printf("\n");// }// printf("sharedN: \n");// for (int i = 0; i < 16; ++i) {// for (int j = 0; j < 8; ++j) {// printf("%f ", sharedM[i][j]);// }// printf("\n");// }// }for (int j = 0; j < blockDim.x; j++)// 3. 相比网上代码,修改这里的indexCsub += sharedM[ty][j] * sharedN[j][ty];__syncthreads();}if (row < numCRows && col < numCColumns)C[row*numCColumns + col] = Csub;}int main(int argc, char **argv)
{clock_t start = 0, finish = 0;float time;int Axy = M * K;int Bxy = K * N;int Cxy = M * N;float *h_A, *h_B, *hostRef, *deviceRef;h_A = (float*)malloc(Axy * sizeof(float));h_B = (float*)malloc(Bxy * sizeof(float));int nBytes = M * N * sizeof(float);hostRef = (float*)malloc(Cxy * sizeof(float));deviceRef = (float*)malloc(Cxy * sizeof(float));initial(h_A, Axy);initial(h_B, Bxy);// printMatrix(h_A, M, K);float *d_A, *d_B, *d_C;cudaMalloc((void**)&d_A, Axy * sizeof(float));cudaMalloc((void**)&d_B, Bxy * sizeof(float));cudaMalloc((void**)&d_C, Cxy * sizeof(float));cudaMemcpy(d_A, h_A, Axy * sizeof(float), cudaMemcpyHostToDevice);cudaMemcpy(d_B, h_B, Bxy * sizeof(float), cudaMemcpyHostToDevice);int dimx = 16;int dimy = 16;dim3 block(dimx, dimy);dim3 grid((M + block.x - 1) / block.x, (N + block.y - 1) / block.y);cudaEvent_t gpustart, gpustop;float elapsedTime = 0.0;cudaEventCreate(&gpustart);cudaEventCreate(&gpustop);cudaEventRecord(gpustart, 0);// multiplicateMatrixOnDevice<<<grid,block>>> (d_A, d_B, d_C, M, K, N);matrixMultiplyShared << < grid, block >> > (d_A, d_B, d_C, M, K, K, N, M, N);cudaDeviceSynchronize();cudaEventRecord(gpustop, 0);cudaEventSynchronize(gpustop);cudaEventElapsedTime(&elapsedTime, gpustart, gpustop);cudaEventDestroy(gpustart);cudaEventDestroy(gpustop);cudaMemcpy(deviceRef, d_C, Cxy * sizeof(float), cudaMemcpyDeviceToHost);printMatrix(deviceRef, M, N);return 0;
}
相关文章:
【模型推理优化学习笔记】CUDA加速矩阵乘计算
矩阵乘可以利用gpu多线程并行的特点进行加速计算,但是传统简单的方法需要多次读取数据到寄存器中,增加耗时,因此利用gpu的共享内存可以被一个block内的所有线程访问到的特性,结合tiling技术进行加速计算。 理论部分不解释了&#…...
第三届 “鹏城杯”(初赛)
第三届 “鹏城杯”(初赛) WEB Web-web1 反序列化tostring打Hack类 Payload:O%3A1%3A%22H%22%3A1%3A%7Bs%3A8%3A%22username%22%3BO%3A6%3A%22Hacker%22%3A2%3A%7Bs%3A11%3A%22%00Hacker%00exp%22%3BN%3Bs%3A11%3A%22%00Hacker%00cmd%22%3BN%3B%7D%7D…...
React Hooks为什么要在顶层使用?
为什么必须在函数顶层使用hooks? 使用过 hooks 的小伙伴应该都会发现,hooks只能在函数式组件的顶层使用,不能在循环,条件或嵌套函数中调用 Hook。 为什么呢? 查阅了很多答案,总结如下: hook…...
Vscode Vim自动切换
在VsCode里安装了Vim插件,由于Vim插件存在Normal和Insert两种模式,会需要经常性的按shift切换中英文,太过麻烦,本文介绍一下如何通过im-select来解决。 首先先确保自己的电脑里装有英文语言包,win10系统下可以使用Win…...
C语言初学1:详解#include <stdio.h>
一、概念 #include <stdio.h> 称为编译预处理命令,它在告诉C编译器在编译时包含stdio.h文件,如果在代码中,调用了这个头文件中的函数或者宏定义,则需引用该头文件。 二、作用 stdio.h是c语言中的标准输入输出的头文件&am…...
5 Tensorflow图像识别(下)模型构建
上一篇:4 Tensorflow图像识别模型——数据预处理-CSDN博客 1、数据集标签 上一篇介绍了图像识别的数据预处理,下面是完整的代码: import os import tensorflow as tf# 获取训练集和验证集目录 train_dir os.path.join(cats_and_dogs_filter…...
OpenCV 图像复制和图像区域读写
图像复制 共享数据, 使用 new Mat(srcMat, ...) 和 newMatsrcMat 生成新的Mat都和原Mat共享数据, 也就是说如果修改某一Mat,其他Mat也会随之改变复制全新的Mat, 使用CopyTo() 和 Clone() 方法将生成一个全新的Mat, 新Mat和原Mat不共享数据. 图像区域和点的读写 区域读取: 通过s…...
【分布式事务】初步探索分布式事务的概率和理论,初识分布式事的解决方案 Seata,TC 服务的部署以及微服务集成 Seata
文章目录 一、分布式服务案例1.1 分布式服务 demo1.2 演示分布式事务问题 二、分布式事务的概念和理论2.1 什么是分布式事务2.2 CAP 定理2.3 BASE 理论2.4 分布式事务模型 三、分布式事务解决方案 —— Seata3.1 什么是 Seata3.2 Seata 的架构3.3 Seata 的四种分布式事务解决方…...
es6过滤对象里面指定的不要的值filter过滤
//过滤出需要的值this.dataItemTypeSelectOption response.data.filter(ele > ele.dictValue tree||ele.dictValue float4);//过滤不需要的值this.dataItemTypeSelectOption response.data.filter((item) > {return item.dictValue ! "float4"&&it…...
Docker从入门到上天系列第二篇:传统虚拟机和容器的对比以及Docker的作用以及所解决的问题
大神推荐:作者有幸结识技术大神孙哥为好友获益匪浅,现在把孙哥作为朋友分享给大家。 孙哥链接:孙哥个人主页 作者简介:一个颜值99分,只比孙哥差一点的程序员。 本专栏简介:话不多说,让我们一起干翻Docker 本文章简介:话不多说,让我们讲清楚首先讲清楚Docker是什么 文章…...
共话医疗数据安全,美创科技@2023南湖HIT论坛,11月11日见
11月11日浙江嘉兴 2023南湖HIT论坛 如约而来 深入数据驱动运营管理、运营数据中心建设、数据治理和数据安全、数据资产“入表”等热点、前沿话题 医疗数据安全、数字化转型深耕者—— 美创科技再次深入参与 全新发布:医疗数据安全白皮书 深度探讨:数字…...
乐园要吸引儿童还是家长?万达宝贝王2000万会员的求精之路
2023年6月,万达宝贝王正式迈入“400店时代”。 万达宝贝王在全国200多座城市,以游乐设施、主题活动、成长课程服务10亿多用户,拥有2000多万名会员,是真正的国内儿童乐园领跑者。 当流量时代变成“留量”时代,用户增长…...
ps人像怎么做渐隐的效果?
photoshop怎么制作人像渐隐的图片效果?渐隐效果需要使用渐变来实现,下面我们就来看看详细的教程。 首先,我们打开Photoshop,点击屏幕框选的【打开】,打开一张背景图片。 下面,我们点击左上角【文件】——【…...
为什么IN操作符一般比OR操作符清单执行更快
IN操作符一般比OR操作符清单执行更快的主要原因有以下几点: 查询优化:数据库管理系统通常会针对IN操作符进行更好的查询优化。它可以使用哈希表或二叉搜索树等数据结构来更快地查找匹配的值,从而减少了搜索时间。而OR操作符需要逐个比较每个条…...
GPT-4-Turbo的128K长度上下文性能如何?超过73K Tokens的数据支持依然不太好!
本文原文来自DataLearnerAI官方网站:GPT-4-Turbo的128K长度上下文性能如何?超过73K Tokens的数据支持依然不太好! | 数据学习者官方网站(Datalearner)https://www.datalearner.com/blog/1051699526438975 GPT-4 Turbo是OpenAI最新发布的号称…...
osg之黑夜背景地月系显示
目录 效果 代码 效果 代码 /** * Lights test. This application is for testing the LightSource support in osgEarth. * 灯光测试。此应用程序用于测试osgEarth中的光源支持。 */ #include "stdafx.h" #include <osgViewer/Viewer> #include <osgEarth/N…...
持续交付-Jenkinsfile 语法
实现 Pipeline 功能的脚本语言叫做 Jenkinsfile,由 Groovy 语言实现。Jenkinsfile 一般是放在项目根目录,随项目一起受源代码管理软件控制,无需像创建"自由风格"项目一样,每次可能需要拷贝很多设置到新项目,…...
IDEA重新choose source
大概现状是这样:之前有个工程,依赖了别的模块基础包,但当时并没有依赖包的源码工程,因此,通过鼠标左键点进去,看到的是jar包里的class文件,注释什么的都去掉了的,不好看。后面有这个…...
解析虚拟文件系统的调用
Linux 可以支持多达数十种不同的文件系统。它们的实现各不相同,因此 Linux 内核向用户空间提供了虚拟文件系统这个统一的接口,来对文件系统进行操作。它提供了常见的文件系统对象模型,例如 inode、directory entry、mount 等,以及…...
佳能相机拍出来的dat文件怎么修复为正常视频
3-3 佳能相机是普通人用得最多的相机之一,也有一些专业机会用于比较重要的场景,比如婚庆、会议录像、家庭录像使用等。 但作为电子产品,经常会出现一些奇怪的故障,最严重的应该就是拍出来的东西打不开了。 本文案例是佳能相机拍…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
