当前位置: 首页 > news >正文

【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割5(训练篇)

在本系列的开篇,就对整个项目训练所需要的所有模块都进行了一个简要的介绍,尤其是针对训练中需要引入的各个结构,进行一个串联操作。

而在之前的数据构建篇和网络模型篇中,都对其中的每一个组块进行了分别的验证,预先在未开始训练前,检验其中的正确性,避免到训练时候,问题连连。

通过这一系列文章的学习后,我相信绝大部分的模块都已经介绍过了。包括:

  1. 综述篇中对优化器、模型获取和保存模型进行了介绍;
  2. 在数据流模块中,学习了如何导入数据,验证数据流;
  3. 网络模型那里,损失函数loss的调用。

本篇其实存在的最大意义,就在于将这些零零散散的东西,拼接成一个整体。至于推理阶段,将单独新开一节,放到后面。通过这个系列的学习,也能多一些思考,加深一些感悟。

一、损失函数

在分割任务中,把目标分割任务的mask,转化为对像素点的分类任务。所以在计算损失的时候,论文里面的损失函数采用的就是交叉熵损失函数

在后续的损失改进中,多引入dice lossfocal loss。我们就从交叉熵损失函数开始,探讨下它为什么可以应用在分割任务中。

本文继续沿着在网络模型评估阶段,使用的交叉熵损失函数,定义如下。对于其他分割的损失函数,参考这篇文章:【AI面试】CrossEntropy Loss 、Bal

相关文章:

【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割5(训练篇)

在本系列的开篇,就对整个项目训练所需要的所有模块都进行了一个简要的介绍,尤其是针对训练中需要引入的各个结构,进行一个串联操作。 而在之前的数据构建篇和网络模型篇中,都对其中的每一个组块进行了分别的验证,预先在未开始训练前,检验其中的正确性,避免到训练时候,…...

【开题报告】基于微信小程序的校园订餐平台的设计与实现

1.选题背景 基于微信小程序的校园订餐平台选题背景可以从以下几个方面展开阐述: (1)校园订餐现状:介绍当前大学校园内学生和教职工的就餐情况,包括饭堂就餐、外卖订餐等方式,以及存在的问题,如…...

C++ vector 动态数组的指定元素删除

文本旨在对 C 的容器 vector 进行肤浅的分析。 文章目录 Ⅰ、vector 的指定元素删除代码结果与分析 Ⅱ、vector 在新增元素后再删除指定元素代码结果与分析 Ⅲ、vector 在特定条件下新增元素代码结果与分析 参考文献 Ⅰ、vector 的指定元素删除 代码 #include <iostream&g…...

Python机器学习算法入门教程(第四部分)

接着Python机器学习算法入门教程&#xff08;第三部分&#xff09;&#xff0c;继续展开描述。 十九、信息熵是什么 通过前两节的学习&#xff0c;我们对于决策树算法有了大体的认识&#xff0c;本节我们将从数学角度解析如何选择合适的“特征做为判别条件”&#xff0c;这里…...

Ubuntu中安装rabbitMQ

一、安装 RabbitMQ ①&#xff1a;更新源 sudo apt-get update②&#xff1a;安装Rrlang语言 由于RabbitMq需要erlang语言的支持&#xff0c;在安装RabbitMq之前需要安装erlang sudo apt-get install erlang-nox③&#xff1a;安装rabbitMQ sudo apt-get install rabbitmq-s…...

Langchain-Chatchat实践详解

简介 本质上是在Langchain基础上封装的一层聊天服务&#xff0c;可以对接底层多种离线LLM和在线的LLM&#xff08;也可以对接自定义的在线LLM&#xff09;。提供基于知识库聊天功能相关的一系列API。 下载源码 源码地址&#xff1a; https://github.com/chatchat-space/Lang…...

python求解优化问题的几个例子

目录 1、最优化问题 2、线性规划 3、无约束优化 3.1单变量 3.2多变量 1、最优化问题 使用scipy库中的minimize函数来求解最优化问题。在这个例子中&#xff0c;我们定义了一个目标函数 objective&#xff0c;其形式为x1^2 x2^2&#xff1b;以及一个约束条件 constraint&…...

HP惠普暗影精灵9P OMEN 17.3英寸游戏本17-cm2000(70W98AV)原装出厂Windows11-22H2系统镜像

链接&#xff1a;https://pan.baidu.com/s/1gJ4ZwWW2orlGYoPk37M-cg?pwd4mvv 提取码&#xff1a;4mvv 惠普暗影9Plus笔记本电脑原厂系统自带所有驱动、出厂主题壁纸、 Office办公软件、惠普电脑管家、OMEN Command Center游戏控制中心等预装程序 所需要工具&#xff1a;3…...

❤ Uniapp使用Ucharts(二)(组件类型)

❤ Uniapp使用Ucharts&#xff08;二&#xff09;&#xff08;秋云组件类型&#xff09; 一、折线图 1、结构 <template><view class"charts-box"><qiun-data-charts type"area":opts"opts":chartData"chartData"/&…...

Linux Vim批量注释和自定义注释

使用 Vim 编辑 Shell 脚本&#xff0c;在进行调试时&#xff0c;需要进行多行的注释&#xff0c;每次都要先切换到输入模式&#xff0c;在行首输入注释符"#"再退回命令模式&#xff0c;非常麻烦。连续行的注释其实可以用替换命令来完成。 换句话说&#xff0c;在指定…...

虚幻C++基础 day3

常见的游戏机制 Actor机关门 创建一个Actor类&#xff0c;添加两个静态网格与一个触发器 UBoxComponentUStaticMeshComponent 头文件&#xff1a; #include “Components/BoxComponent.h”#include “Components/StaticMeshComponent.h” TriggerDoor.h // Fill out your …...

第26期 | GPTSecurity周报

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区&#xff0c;集成了生成预训练Transformer&#xff08;GPT&#xff09;、人工智能生成内容&#xff08;AIGC&#xff09;以及大型语言模型&#xff08;LLM&#xff09;等安全领域应用的知识。在这里&#xff0c;您可以…...

(动手学习深度学习)第7章 稠密连接网络---DenseNet

目录 DenseNetDenseNet的优点&#xff1a;DenseNet的改进思路总结 DenseNet代码实现 DenseNet DenseNet的优点&#xff1a; 省参数。在 ImageNet 分类数据集上达到同样的准确率&#xff0c;DenseNet 所需的参数量不到 ResNet 的一半。对于工业界而言&#xff0c;小模型可以显著…...

UART编程(寄存器)

1. 串口编程步骤 1.1 看原理图确定引脚 有很多串口&#xff0c;使用哪一个&#xff1f;看原理图确定 1.2 配置引脚为UART功能 至少用到发送、接收引脚&#xff1a;txd、rxd 需要把这些引脚配置为UART功能&#xff0c;并使能UART模块 1.3 设置串口参数 有哪些参数&#xf…...

事务码增删查改表数据

常用事务码 SE11 SE14 SE16 SE16N SM30 SE11:查看数据库表/修改表中字段数量_类型/查看表中数据/设置表为可维护或不可维护 SE14:查看数据库表的创建日期创建用户名/查看表中字段/删除表中全部数据(只能全部删) SE16:查看数据库表/对可维护数据库表进行数据维护/SE16通过调试…...

vue开发环境搭建部署(mac版)

前言 目前后端工作越来越少了&#xff0c;年底了&#xff0c;为了先过验收。项目负责人、产品、需求制定的方案就是先做假页面&#xff0c;所以前端的活多点。 其实现在不喜欢搞前端&#xff0c;原因很多&#xff0c;但是感觉现在似乎流行的码林绝学又是九九归一的瓶颈期…...

Java【算法 05】通过时间获取8位验证码(每两个小时生成一个)源码分享

通过时间获取验证码 1.需求2.代码实现2.1 依赖2.2 时间参数处理方法2.3 截取验证码方法2.4 验证方法 3.总结 1.需求 要求是很简单的&#xff0c;每个验证码的有效时间是2小时&#xff0c;这个并不是收到验证码开始计时的&#xff0c;而是每个两小时的时间段使用的是相同的验证…...

微服务 Spring Cloud 5,一图说透Spring Cloud微服务架构

目录 一、域名系统DNS二、LVS&#xff08;Linux Virtual Server&#xff09;,Linux虚拟服务器三、CDN静态资源四、Nginx反向代理服务器1、Nginx的主要作用体现在以下几个方面&#xff1a;2、Nginx静态资源服务和CDN静态资源服务&#xff0c;如何选择&#xff1f; 五、Gateway网…...

conda清华源安装cuda12.1的pytorch

使用pytorch官方提供的conda command奇慢无比&#xff0c;根本装不下来&#xff08;科学的情况下也这样&#xff09; 配置一下清华源使用清华源装就好了 清华源&#xff1a;https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ 配置方法&#xff1a;conda config --…...

安徽首届道医传承十八绝技发布会在合肥成功举办

近日&#xff0c;在安徽合肥举行了首届道医传承十八绝技发布会&#xff0c;本次会议由安徽渡罗门生物科技有限公司、北京道武易医文化传播有限公司、楼观台道医文化研究院联合举办。现场吸引了来自全国各地民族医学领域的专家学者参与讨论与交流。本次会议旨在促进道医的交流与…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...