当前位置: 首页 > news >正文

(论文阅读24/100)Visual Tracking with Fully Convolutional Networks

文献阅读笔记(sel - CNN)

简介

题目

Visual Tracking with Fully Convolutional Networks

作者

Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu   

原文链接

http://202.118.75.4/lu/Paper/ICCV2015/iccv15_lijun.pdf

【DeepLearning】简述Visual Tracking with Fully Convolutional Networks-CSDN博客

关键词

Visual Tracking、fcn、sel - CNN

研究问题

  • 不同层次的卷积层从不同角度对目标进行表征。

顶层编码更抽象和更高层的语义特征,充当类别检测器,能够很好地区分不同类别的物体,对形变和遮挡具有很强的鲁棒性。

而下层携带更多的判别信息,能更好地将目标与外观相似的干扰目标分离,但是对外观的剧烈变化鲁棒性较差。

  • 不同的物体响应不同的神经元。

研究方法

  • 在追踪过程中根据干扰项的出现自动选择这两层(顶层和底层)的用法。

we propose to automatically switch the usage of these two layers during tracking depending on the occurrence of distracters.

  • 提出了特征选择方法去除噪声和不相关的feature maps,能够减少冗余计算以及改善跟踪精度。

A feature map selection method is developed to remove noisy and irrelevant feature maps, which can reduce computation redundancy and improve tracking accuracy.

  • 通过适当的特征选择,去除与目标表示无关的噪声特征图,剩余的特征图可以更准确地突出目标并抑制来自背景的响应。

through proper feature selection, the noisy feature maps not related to the representation of the target are cleared out and the remaining ones can more accurately highlight the target and suppress responses from background.

  • 特征分析是基于16层的vgg进行的

由13个卷积层和3个全连接层组成。

由于池化层和卷积层的存在,conv4 - 3和conv5 - 3层的感受野都非常大(分别为92 × 92和196 × 196像素)。

conv4 - 3层(第10层卷积层):捕获的特征对类内外观变化更加敏感,选择的特征图可以很好地将目标人物与其他非目标人物区分开。此外,不同的特征映射关注的对象部分也不同。

Conv5 - 3层(第13层卷积层):特征图编码了高层次的语义信息,能够更好地将人脸和非人脸物体区分开来。但它们在区分一个身份和另一个身份时的准确率低于conv4 - 3的特征图。

算法设置:

sel - CNN:

sel - CNN模型由一个dropout层和一个没有任何非线性变换的卷积层组成。以待选特征图( conv4-3或con5-3)为输入,预测目标热力图M,M是以真值目标位置为中心的二维高斯,方差与目标尺寸成正比。通过最小化预测的前景热图( M )与目标热图M之间的平方损失来训练模型。

  1. 对于给定的目标,在VGG网络的conv4 - 3和conv5 - 3层上执行特征图选择过程,以选择最相关的特征图,并避免噪声特征图上的过拟合。
  2. 在选定的conv5 - 3层特征图之上构建一个捕获目标类别信息的通用网络( GNet )。
  3. 在conv4 - 3层选择的特征图上构建一个特定的网络( SNet ),将目标与外观相似的背景区分开来。

为了避免在线更新引入的背景噪声,我们固定GNet,只在第一帧初始化后更新SNet。SNet的更新遵循两种不同的规则:自适应规则和判别规则,其目的分别是使SNet适应目标外观变化和提高对前景和背景的判别能力。根据自适应规则,我们每隔20帧使用间隔帧中最可信的跟踪结果微调SNet。基于判别规则,当检测到干扰项时,利用第一帧和当前帧的跟踪结果,通过最小化进一步更新SNet。

  1. GNet和SNet均在第一帧进行初始化,对目标进行前景热图回归,并采用不同的在线更新策略。SNet和GNet。这两个网络具有相同的架构,由两个额外的卷积层组成。第一个额外的卷积层具有大小为9 × 9的卷积核,并输出36个特征图作为下一层的输入。第二个额外的卷积层具有大小为5 × 5的卷积核,并输出输入图像的前景热图。选择ReLU作为这两层的非线性项。SNet和GNet在第1帧通过最小化下面的平方损失函数进行初始化
  2. 对于新的一帧,以最后一个目标位置为中心,包含目标和背景上下文的感兴趣区域( Region of Interest,ROI )被裁剪并通过全卷积网络传播。
  3. 通过GNet和SNet分别生成两个前景热图。基于两个热力图独立地进行目标定位。
  4. 最终目标由干扰物检测方案确定,该方案决定使用第6步中的哪个热图。

研究结论

虽然CNN特征图的感受野1较大,但激活的特征图稀疏且局部化。激活的区域与语义对象的区域高度相关。

许多CNN特征图对于从背景中区分特定目标的任务是有噪声或不相关的。

创新不足

在低分辨率(LR)的情况下:FCNT具有较高的失败率,

是因为,VGG网络是利用高分辨率的图片进行预训练的。

额外知识

前景掩码:前景掩码是指在图像处理中,将前景和背景分离的一种技术。它是一种二进制图像,其中前景像素被标记为1,背景像素被标记为0。前景掩码可以用于图像分割、目标跟踪、背景建模等应用中。在OpenCV中,可以使用不同的算法来生成前景掩码,例如基于高斯混合模型(GMM)的背景减法算法、基于自适应混合高斯模型(MOG)的背景减法算法等。

相关文章:

(论文阅读24/100)Visual Tracking with Fully Convolutional Networks

文献阅读笔记(sel - CNN) 简介 题目 Visual Tracking with Fully Convolutional Networks 作者 Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu 原文链接 http://202.118.75.4/lu/Paper/ICCV2015/iccv15_lijun.pdf 【DeepLearning】…...

第10章 文件和异常

目录 1. 从文件中读取数据1.1 读取整个文件1.2 逐行读取1.3 创建一个包含文件各行内容的列表 2. 写入文件2.1 写入空文件2.2 写入多行2.3 附加到文件 3. 异常使用try-except-else代码块 4. 存储数据使用json.dump()和json.load() 1. 从文件中读取数据 1.1 读取整个文件 with …...

【云栖2023】张治国:MaxCompute架构升级及开放性解读

简介: 本文根据2023云栖大会演讲实录整理而成,演讲信息如下 演讲人:张治国|阿里云智能计算平台研究员、阿里云MaxCompute负责人 演讲主题:MaxCompute架构升级及开放性解读 活动:2023云栖大会 MaxCompute发展经历了…...

【经验模态分解】4.信号由时域向频域的转换

/*** poject 经验模态分解及其衍生算法的研究及其在语音信号处理中的应用* file 傅里叶变换与小波变换* author jUicE_g2R(qq:3406291309)* * language MATLAB* EDA Base on matlabR2022b* editor Obsidian(黑曜石笔记软件&#…...

STM32的M4内核在keil上面float访问就hard_fault原因

使用 Keil MDK(Microcontroller Development Kit)开发时,出现硬件故障(hard fault)通常是由于访问浮点数(float)数据类型时,浮点单元配置不正确或浮点单元启用导致的。以下是一些可能…...

【LeetCode】217. 存在重复元素

217. 存在重复元素 难度:简单 题目 给你一个整数数组 nums 。如果任一值在数组中出现 至少两次 ,返回 true ;如果数组中每个元素互不相同,返回 false 。 示例 1: 输入:nums [1,2,3,1] 输出&#xff1…...

【Redis缓存架构实战常见问题剖析】

文章目录 一、Redis缓存架构实战剖析1.1、大规模的商品缓存数据冷热分离机制1.2、缓存击穿导致线上数据压力暴增解决方案1.3、缓存穿透及其解决方案剖析1.4、突发性的热点缓存数重建导致系统压力暴增问题分析1.5、Redis分布式锁解决缓存与数据库双写不一致问题剖析1.6、利用多级…...

mac M2 pytorch_geometric安装

我目前的环境是mac M2,我在base环境中安装了pytorch_geometric,仅仅做测试用的,不做真正跑代码的测试 首先我的base环境的设置如下: pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.…...

【C++】异常 智能指针

C异常 & 智能指针 1.C异常1.1.异常的抛出与捕获1.2.异常体系1.3.异常安全与规范1.4.异常优缺点 2.智能指针2.1.RAII2.2.智能指针的使用及原理2.2.1.auto_ptr2.2.2.unique_ptr2.2.3.shared_ptr2.2.4.shared_ptr的循环引用问题 & weak_ptr 2.3.定制删除器 1.C异常 C异常…...

切换数据库的临时表空间为temp1 / 切换数据库的undo表空间为 undotbs01

目录 ​编辑 一、切换临时表空间 1、登录数据库 2、查询默认临时表空间 3、创建临时表空间temp1(我们的目标表空间) 4、修改默认temp表空间 5、查询用户默认临时表空间 6、命令总结: 二、切换数据库的undo表空间 1、查询默认undo表…...

react: scss使用样式

方式一&#xff1a; 将样式作为模块使用 //List.tsx import styles from /styles/apppublish.module.scss <div className{styles.contentOverflow}></div>//apppublish.module.scss .contentOverflow {height: 100%;overflow-y: auto;display: flex;flex-directi…...

JAVA深化篇_36—— Java网络编程中的常用类

Java网络编程中的常用类 Java为了跨平台&#xff0c;在网络应用通信时是不允许直接调用操作系统接口的&#xff0c;而是由java.net包来提供网络功能。下面我们来介绍几个java.net包中的常用的类。 InetAddress的使用 作用&#xff1a;封装计算机的IP地址和DNS&#xff08;没…...

python操作链接数据库和Mysql中的事务在python的处理

python操作数据库 pymysql模块: pip install pymysql作用:可以实现使用python程序链接mysql数据库&#xff0c;且可以直接在python中执行sql语句 添加操作 import pymysql #1.创建链接对象c conn pymysql.Connect(host127.0.0.1,#数据库服务器主机地址port3306, #mysql的端口…...

【qemu逃逸】XCTF 华为高校挑战赛决赛-pipeline

前言 虚拟机用户名: root 无密码 设备逆向与漏洞分析 程序没有去符合, 还是比较简单. 实例结构体如下: 先总体说一下流程: encode 为 base64 编码函数, decode 为 base64 解码函数. 然后 encPipe 和 decPipe 分别存放编码数据和解码数据, 分别有四个: 其中 EncPipeLine 中…...

muduo源码剖析之TcpClient客户端类

简介 muduo用TcpClient发起连接&#xff0c;TcpClient有一个Connector连接器&#xff0c;TCPClient使用Conneccor发起连接, 连接建立成功后, 用socket创建TcpConnection来管理连接, 每个TcpClient class只管理一个TcpConnecction&#xff0c;连接建立成功后设置相应的回调函数…...

C语言——switch语句判断星期

#define _CRT_SECURE_NO_WARNINGS 1#include<stdio.h> int main() {int day 0;scanf("请输入1-7之间的整数&#xff1a;%d",&day);switch(day){case 1:printf("星期一\n");break;case 2:printf("星期二\n");break;case 3:printf(&quo…...

栈回溯之CmBacktrace

简介 CmBacktrace &#xff08;Cortex Microcontroller Backtrace&#xff09;是一款针对 ARM Cortex-M 系列 MCU 的错误代码自动追踪、定位&#xff0c;错误原因自动分析的开源库。主要特性如下&#xff1a; 支持的错误包括&#xff1a; 断言&#xff08;assert&#xff09;…...

node插件MongoDB(二)——MongoDB的基本命令

文章目录 前言1. 数据库命令&#xff08;1&#xff09;显示所有数据库&#xff08;2&#xff09;切换指定数据库&#xff08;若没有自动创建&#xff09;&#xff08;3&#xff09;显示当前所在数据库&#xff08;4&#xff09;删除当前数据库 2.集合&#xff08;表名&#xff…...

【Git】推送Github失败:remote: Permission to xxx/*.git denied to xxx

在github上&#xff0c;创建了token&#xff0c;推送代码报没权限 #设置token git remote set-url origin <your.token>github.com/<your.name>/hello-git.git#推送代码 #git push -u origin main remote: Permission to xxx/hello-git.git denied to xxx. fatal:…...

Flink -- 状态与容错

1、Stateful Operations 有状态算子&#xff1a; 有状态计算&#xff0c;使用到前面的数据&#xff0c;常见的有状态的算子&#xff1a;例如sum、reduce&#xff0c;因为它们在计算的时候都是用到了前面的计算的结果 总结来说&#xff0c;有状态计算并不是独立存在的&#xf…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...