当前位置: 首页 > news >正文

竞赛 目标检测-行人车辆检测流量计数

文章目录

  • 前言
  • 1\. 目标检测概况
    • 1.1 什么是目标检测?
    • 1.2 发展阶段
  • 2\. 行人检测
    • 2.1 行人检测简介
    • 2.2 行人检测技术难点
    • 2.3 行人检测实现效果
    • 2.4 关键代码-训练过程
  • 最后

前言

🔥 优质竞赛项目系列,今天要分享的是

行人车辆目标检测计数系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1. 目标检测概况

1.1 什么是目标检测?

目标检测,粗略来说就是:输入图片/视频,经过处理,得到:目标的位置信息(比如左上角和右下角的坐标)、目标的预测类别、目标的预测置信度(confidence)。

1.2 发展阶段

  1. 手工特征提取算法,如VJ、HOG、DPM

  2. R-CNN算法(2014),最早的基于深度学习的目标检测器之一,其结构是两级网络:

  • 1)首先需要诸如选择性搜索之类的算法来提出可能包含对象的候选边界框;
  • 2)然后将这些区域传递到CNN算法进行分类;
  1. R-CNN算法存在的问题是其仿真很慢,并且不是完整的端到端的目标检测器。

  2. Fast R-CNN算法(2014末),对原始R-CNN进行了相当大的改进:提高准确度,并减少执行正向传递所花费的时间。
    是,该模型仍然依赖于外部区域搜索算法。

  3. faster R-CNN算法(2015),真正的端到端深度学习目标检测器。删除了选择性搜索的要求,而是依赖于

  • (1)完全卷积的区域提议网络(RPN, Region Purpose Network),可以预测对象边界框和“对象”分数(量化它是一个区域的可能性的分数)。
  • (2)然后将RPN的输出传递到R-CNN组件以进行最终分类和标记。
  1. R-CNN系列算法,都采取了two-stage策略。特点是:虽然检测结果一般都非常准确,但仿真速度非常慢,即使是在GPU上也仅获得5 FPS。

  2. one-stage方法有:yolo(2015)、SSD(2015末),以及在这两个算法基础上改进的各论文提出的算法。这些算法的基本思路是:均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,然后利用CNN提取特征后直接进行分类与回归。
    整个过程只需要一步,所以其优势是速度快,但是训练比较困难。

  3. yolov3(2018)是yolo作者提出的第三个版本(之前还提过yolov2和它们的tinny版本,tinny版本经过压缩更快但是也降低了准确率)。

2. 行人检测

这里学长以行人检测作为例子来讲解目标检测。

2.1 行人检测简介

行人检测( Pedestrian Detection)一直是计算机视觉研究中的热点和难点。行人检测要解决的问题是:找出图像或视频帧

行人检测技术有很强的使用价值,它可以与行人跟踪,行人重识别等技术结合,应用于汽车无人驾驶系统(ADAS),智能机器人,智能视频监控,人体行为分析,客流统计系统,智能交通等领域。

2.2 行人检测技术难点

由于人体具有相当的柔性,因此会有各种姿态和形状,其外观受穿着,姿态,视角等影响非常大,另外还面临着遮挡
、光照等因素的影响,这使得行人检测成为计算机视觉领域中一个极具挑战性的课题。行人检测要解决的主要难题是:

  • 外观差异大:包括视角,姿态,服饰和附着物,光照,成像距离等。从不同的角度看过去,行人的外观是很不一样的。处于不同姿态的行人,外观差异也很大。由于人穿的衣服不同,以及打伞、戴帽子、戴围巾、提行李等附着物的影响,外观差异也非常大。光照的差异也导致了一些困难。远距离的人体和近距离的人体,在外观上差别也非常大。

  • 遮挡问题: 在很多应用场景中,行人非常密集,存在严重的遮挡,我们只能看到人体的一部分,这对检测算法带来了严重的挑战。

  • 背景复杂:无论是室内还是室外,行人检测一般面临的背景都非常复杂,有些物体的外观和形状、颜色、纹理很像人体,导致算法无法准确的区分。

  • 检测速度:行人检测一般采用了复杂的模型,运算量相当大,要达到实时非常困难,一般需要大量的优化。

2.3 行人检测实现效果

在这里插入图片描述

检测到行人后还可以做流量分析:

在这里插入图片描述

2.4 关键代码-训练过程

import cv2import numpy as npimport randomdef load_images(dirname, amout = 9999):img_list = []file = open(dirname)img_name = file.readline()while img_name != '':  # 文件尾img_name = dirname.rsplit(r'/', 1)[0] + r'/' + img_name.split('/', 1)[1].strip('\n')img_list.append(cv2.imread(img_name))img_name = file.readline()amout -= 1if amout <= 0: # 控制读取图片的数量breakreturn img_list# 从每一张没有人的原始图片中随机裁出10张64*128的图片作为负样本def sample_neg(full_neg_lst, neg_list, size):random.seed(1)width, height = size[1], size[0]for i in range(len(full_neg_lst)):for j in range(10):y = int(random.random() * (len(full_neg_lst[i]) - height))x = int(random.random() * (len(full_neg_lst[i][0]) - width))neg_list.append(full_neg_lst[i][y:y + height, x:x + width])return neg_list# wsize: 处理图片大小,通常64*128; 输入图片尺寸>= wsizedef computeHOGs(img_lst, gradient_lst, wsize=(128, 64)):hog = cv2.HOGDescriptor()# hog.winSize = wsizefor i in range(len(img_lst)):if img_lst[i].shape[1] >= wsize[1] and img_lst[i].shape[0] >= wsize[0]:roi = img_lst[i][(img_lst[i].shape[0] - wsize[0]) // 2: (img_lst[i].shape[0] - wsize[0]) // 2 + wsize[0], \(img_lst[i].shape[1] - wsize[1]) // 2: (img_lst[i].shape[1] - wsize[1]) // 2 + wsize[1]]gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)gradient_lst.append(hog.compute(gray))# return gradient_lstdef get_svm_detector(svm):sv = svm.getSupportVectors()rho, _, _ = svm.getDecisionFunction(0)sv = np.transpose(sv)return np.append(sv, [[-rho]], 0)# 主程序# 第一步:计算HOG特征neg_list = []pos_list = []gradient_lst = []labels = []hard_neg_list = []svm = cv2.ml.SVM_create()pos_list = load_images(r'G:/python_project/INRIAPerson/96X160H96/Train/pos.lst')full_neg_lst = load_images(r'G:/python_project/INRIAPerson/train_64x128_H96/neg.lst')sample_neg(full_neg_lst, neg_list, [128, 64])print(len(neg_list))computeHOGs(pos_list, gradient_lst)[labels.append(+1) for _ in range(len(pos_list))]computeHOGs(neg_list, gradient_lst)[labels.append(-1) for _ in range(len(neg_list))]# 第二步:训练SVMsvm.setCoef0(0)svm.setCoef0(0.0)svm.setDegree(3)criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 1000, 1e-3)svm.setTermCriteria(criteria)svm.setGamma(0)svm.setKernel(cv2.ml.SVM_LINEAR)svm.setNu(0.5)svm.setP(0.1)  # for EPSILON_SVR, epsilon in loss function?svm.setC(0.01)  # From paper, soft classifiersvm.setType(cv2.ml.SVM_EPS_SVR)  # C_SVC # EPSILON_SVR # may be also NU_SVR # do regression tasksvm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))# 第三步:加入识别错误的样本,进行第二轮训练# 参考 http://masikkk.com/article/SVM-HOG-HardExample/hog = cv2.HOGDescriptor()hard_neg_list.clear()hog.setSVMDetector(get_svm_detector(svm))for i in range(len(full_neg_lst)):rects, wei = hog.detectMultiScale(full_neg_lst[i], winStride=(4, 4),padding=(8, 8), scale=1.05)for (x,y,w,h) in rects:hardExample = full_neg_lst[i][y:y+h, x:x+w]hard_neg_list.append(cv2.resize(hardExample,(64,128)))computeHOGs(hard_neg_list, gradient_lst)[labels.append(-1) for _ in range(len(hard_neg_list))]svm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))# 第四步:保存训练结果hog.setSVMDetector(get_svm_detector(svm))hog.save('myHogDector.bin')

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

竞赛 目标检测-行人车辆检测流量计数

文章目录 前言1\. 目标检测概况1.1 什么是目标检测&#xff1f;1.2 发展阶段 2\. 行人检测2.1 行人检测简介2.2 行人检测技术难点2.3 行人检测实现效果2.4 关键代码-训练过程 最后 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 行人车辆目标检测计数系统 …...

秋招进入尾声了,还有哪些公司和岗位可以投递?

24届秋招基本已经进入尾声了&#xff0c;接下来就是秋招补录了&#xff0c;最近在微信群看到一些同学再问哪些公司还在招人的。 在这里跟大家分享一份2024届秋招信息汇总表&#xff0c;目前已更新2000家&#xff0c;不仅有互联网公司&#xff0c;还有外企、国企、各类研究所&am…...

CSS 文字溢出省略号显示

1. 单行文本溢出显示省略号 需要满足三个条件&#xff0c;添加对应的代码&#xff1a; &#xff08;1&#xff09;先强制一行内显示文本&#xff1b; &#xff08;2&#xff09;超出的部分隐藏&#xff1b; &#xff08;3&#xff09;文字用省略号来替代省略的部分&#xf…...

POD创建与删除简单描述

创建一个 Pod 的过程可以分为以下几个步骤&#xff1a; 用户使用 kubectl create 命令或 YAML 文件向 API 服务器发送创建 Pod 的请求。API 服务器将请求转换为 Kubernetes 的内部对象&#xff0c;并将 Pod 的状态设置为 Pending。调度器根据 Pod 的资源需求和节点的资源情况&…...

AndroidStudio打包报错记录(commons-logging,keystore password was incorrect)

场景&#xff1a; AndroidStudio2022打包APK的时报错 1.commons-logging依赖冲突 报错主要信息如下 Error: commons-logging defines classes that conflict with classes now provided by Android. 通过报错信息可以看出&#xff0c;项目中的commons-logging与Android系统自带…...

如何构建企业数据资产?数据资产如何入资产负债表 ?

一、构建企业数据资产 1. 数据收集 需要从多渠道收集数据&#xff0c;包括企业内部系统、市场调研、社交媒体、客户反馈等。在收集数据时&#xff0c;需要注意数据的真实性、完整性和可靠性。同时&#xff0c;需要考虑如何将不同渠道的数据进行整合和标准化&#xff0c;以便后…...

代码随想录算法训练营Day 47 || 198.打家劫舍、213.打家劫舍II、337.打家劫舍 III

198.打家劫舍 力扣题目链接(opens new window) 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋。每间房内都藏有一定的现金&#xff0c;影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统&#xff0c;如果两间相邻的房屋在同一晚上被小偷闯入&#xff0c;系…...

(论文阅读24/100)Visual Tracking with Fully Convolutional Networks

文献阅读笔记&#xff08;sel - CNN&#xff09; 简介 题目 Visual Tracking with Fully Convolutional Networks 作者 Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu 原文链接 http://202.118.75.4/lu/Paper/ICCV2015/iccv15_lijun.pdf 【DeepLearning】…...

第10章 文件和异常

目录 1. 从文件中读取数据1.1 读取整个文件1.2 逐行读取1.3 创建一个包含文件各行内容的列表 2. 写入文件2.1 写入空文件2.2 写入多行2.3 附加到文件 3. 异常使用try-except-else代码块 4. 存储数据使用json.dump()和json.load() 1. 从文件中读取数据 1.1 读取整个文件 with …...

【云栖2023】张治国:MaxCompute架构升级及开放性解读

简介&#xff1a; 本文根据2023云栖大会演讲实录整理而成&#xff0c;演讲信息如下 演讲人&#xff1a;张治国|阿里云智能计算平台研究员、阿里云MaxCompute负责人 演讲主题&#xff1a;MaxCompute架构升级及开放性解读 活动&#xff1a;2023云栖大会 MaxCompute发展经历了…...

【经验模态分解】4.信号由时域向频域的转换

/*** poject 经验模态分解及其衍生算法的研究及其在语音信号处理中的应用* file 傅里叶变换与小波变换* author jUicE_g2R(qq:3406291309)* * language MATLAB* EDA Base on matlabR2022b* editor Obsidian&#xff08;黑曜石笔记软件&#…...

STM32的M4内核在keil上面float访问就hard_fault原因

使用 Keil MDK&#xff08;Microcontroller Development Kit&#xff09;开发时&#xff0c;出现硬件故障&#xff08;hard fault&#xff09;通常是由于访问浮点数&#xff08;float&#xff09;数据类型时&#xff0c;浮点单元配置不正确或浮点单元启用导致的。以下是一些可能…...

【LeetCode】217. 存在重复元素

217. 存在重复元素 难度&#xff1a;简单 题目 给你一个整数数组 nums 。如果任一值在数组中出现 至少两次 &#xff0c;返回 true &#xff1b;如果数组中每个元素互不相同&#xff0c;返回 false 。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,3,1] 输出&#xff1…...

【Redis缓存架构实战常见问题剖析】

文章目录 一、Redis缓存架构实战剖析1.1、大规模的商品缓存数据冷热分离机制1.2、缓存击穿导致线上数据压力暴增解决方案1.3、缓存穿透及其解决方案剖析1.4、突发性的热点缓存数重建导致系统压力暴增问题分析1.5、Redis分布式锁解决缓存与数据库双写不一致问题剖析1.6、利用多级…...

mac M2 pytorch_geometric安装

我目前的环境是mac M2&#xff0c;我在base环境中安装了pytorch_geometric,仅仅做测试用的&#xff0c;不做真正跑代码的测试 首先我的base环境的设置如下&#xff1a; pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.…...

【C++】异常 智能指针

C异常 & 智能指针 1.C异常1.1.异常的抛出与捕获1.2.异常体系1.3.异常安全与规范1.4.异常优缺点 2.智能指针2.1.RAII2.2.智能指针的使用及原理2.2.1.auto_ptr2.2.2.unique_ptr2.2.3.shared_ptr2.2.4.shared_ptr的循环引用问题 & weak_ptr 2.3.定制删除器 1.C异常 C异常…...

切换数据库的临时表空间为temp1 / 切换数据库的undo表空间为 undotbs01

目录 ​编辑 一、切换临时表空间 1、登录数据库 2、查询默认临时表空间 3、创建临时表空间temp1&#xff08;我们的目标表空间&#xff09; 4、修改默认temp表空间 5、查询用户默认临时表空间 6、命令总结&#xff1a; 二、切换数据库的undo表空间 1、查询默认undo表…...

react: scss使用样式

方式一&#xff1a; 将样式作为模块使用 //List.tsx import styles from /styles/apppublish.module.scss <div className{styles.contentOverflow}></div>//apppublish.module.scss .contentOverflow {height: 100%;overflow-y: auto;display: flex;flex-directi…...

JAVA深化篇_36—— Java网络编程中的常用类

Java网络编程中的常用类 Java为了跨平台&#xff0c;在网络应用通信时是不允许直接调用操作系统接口的&#xff0c;而是由java.net包来提供网络功能。下面我们来介绍几个java.net包中的常用的类。 InetAddress的使用 作用&#xff1a;封装计算机的IP地址和DNS&#xff08;没…...

python操作链接数据库和Mysql中的事务在python的处理

python操作数据库 pymysql模块: pip install pymysql作用:可以实现使用python程序链接mysql数据库&#xff0c;且可以直接在python中执行sql语句 添加操作 import pymysql #1.创建链接对象c conn pymysql.Connect(host127.0.0.1,#数据库服务器主机地址port3306, #mysql的端口…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...