邻接表储存图实现广度优先遍历(C++)
目录
基本要求:
邻接表的结构体:
图的邻接表创建:
图的广度优先遍历(BFS):
邻接表的打印输出:
完整代码:
测试数据:
结果运行:
通过给出的图的顶点和边的信息,构建无向图的邻接表存储结构。在此基础上,从A顶点开始,对无向图进行广度优先遍历,输出遍历序列。
基本要求:
(1)从测试数据读入顶点和边信息,建立无向图邻接表存储结构;
(2)把构建好的邻接表输入显示;
(3)从A顶点开始,编写BFS广度优先遍历算法;
(4)输出广度优先遍历序列。
邻接表的结构体:
typedef char VerTexType;
typedef struct Arcnode//边节点
{int adjvex;//该边所指向的顶点的位置struct Arcnode* nextarc;//指向下一条边的指针
}Arcnode;
typedef struct vnode//顶点节点
{VerTexType data;//顶点信息Arcnode* firstarc;//指向第一条依附该顶点的边的指针
}Vnode, AdjList[MVNum];
typedef struct//图
{AdjList vertices;//头顶点int vexnum, arcnum;//图当前顶点数和边数
}ALGraph;
图的邻接表创建:
bool CreateUDG(ALGraph& G)
{cin >> G.vexnum >> G.arcnum;//输入总顶点数,总边数for (int i = 0; i < G.vexnum; i++)//输入各点,构造表头结点表{cin >> G.vertices[i].data;//输入顶点值G.vertices[i].firstarc = NULL;//初始化表头节点指针域mp[G.vertices[i].data] = 0;//辅助数组,是否访问过该点,0表示没访问过}VerTexType v1, v2;for (int k = 0; k < G.arcnum; k++){cin >> v1 >> v2;//输入边相邻节点int i = LocateVex(G, v1);int j = LocateVex(G, v2);//确定v1,v2位置Arcnode* p1, * p2;p1 = new Arcnode;//生成一个新的边节点p1->adjvex = j;//邻节点序号为jp1->nextarc = G.vertices[i].firstarc;G.vertices[i].firstarc = p1;//将新节点插入顶点vi的边表头部p2 = new Arcnode;p2->adjvex = i;//邻接点序号为ip2->nextarc = G.vertices[j].firstarc;G.vertices[j].firstarc = p2;//将新节点插入顶点vj的表头部}return 1;
}
图的广度优先遍历(BFS):
void BFS(ALGraph& G,VerTexType u)
{cout<<”BFS序列:”<<endl;queue<VerTexType> q;q.push(u);while (!q.empty()){u = q.front();q.pop();int i = LocateVex(G, u);//取该点的位置if (!mp[G.vertices[i].data])//辅助数组,是否访问过{cout << G.vertices[i].data << " ";mp[G.vertices[i].data] = 1;}Arcnode* p;p = G.vertices[i].firstarc;while (p != NULL)//访问该头节点的链表{if (!mp[G.vertices[p->adjvex].data]){cout << G.vertices[p->adjvex].data << " ";mp[G.vertices[p->adjvex].data] = 1;q.push(G.vertices[p->adjvex].data);}p = p->nextarc;}}
}
邻接表的打印输出:
bool Print(ALGraph& G)
{cout << "邻接表:" << endl;for (int i = 0; i < G.vexnum; i++){cout << G.vertices[i].data << " ";Arcnode* p;p = G.vertices[i].firstarc;while (p != NULL){cout << G.vertices[p->adjvex].data << " ";p = p->nextarc;}cout << endl;}return 1;
}
完整代码:
#include<queue>
#include<map>
#define MVNum 100
using namespace std;
typedef char VerTexType;
map<VerTexType,int> mp;
typedef struct Arcnode//边节点
{int adjvex;//该边所指向的顶点的位置struct Arcnode* nextarc;//指向下一条边的指针
}Arcnode;
typedef struct vnode//顶点节点
{VerTexType data;//顶点信息Arcnode* firstarc;//指向第一条依附该顶点的边的指针
}Vnode, AdjList[MVNum];
typedef struct//图
{AdjList vertices;//头顶点int vexnum, arcnum;//图当前顶点数和边数
}ALGraph;
int LocateVex(ALGraph G, VerTexType u)//取该点位置
{for (int i = 0; i < G.vexnum; i++)if (u == G.vertices[i].data) return i;return -1;
}
bool CreateUDG(ALGraph& G)
{cin >> G.vexnum >> G.arcnum;//输入总顶点数,总边数for (int i = 0; i < G.vexnum; i++)//输入各点,构造表头结点表{cin >> G.vertices[i].data;//输入顶点值G.vertices[i].firstarc = NULL;//初始化表头节点指针域mp[G.vertices[i].data] = 0;}VerTexType v1, v2;for (int k = 0; k < G.arcnum; k++){cin >> v1 >> v2;//输入边相邻节点int i = LocateVex(G, v1);int j = LocateVex(G, v2);//确定v1,v2位置Arcnode* p1, * p2;p1 = new Arcnode;//生成一个新的边节点p1->adjvex = j;//邻节点序号为jp1->nextarc = G.vertices[i].firstarc;G.vertices[i].firstarc = p1;//将新节点插入顶点vi的边表头部p2 = new Arcnode;p2->adjvex = i;//邻接点序号为ip2->nextarc = G.vertices[j].firstarc;G.vertices[j].firstarc = p2;//将新节点插入顶点vj的表头部}return 1;
}
bool Print(ALGraph& G)
{cout << "邻接表:" << endl;for (int i = 0; i < G.vexnum; i++){cout << G.vertices[i].data << " ";Arcnode* p;p = G.vertices[i].firstarc;while (p != NULL){cout << G.vertices[p->adjvex].data << " ";p = p->nextarc;}cout << endl;}return 1;
}
void BFS(ALGraph& G,VerTexType u)
{cout<<”BFS序列:”<<endl;queue<VerTexType> q;q.push(u);while (!q.empty()){u = q.front();q.pop();int i = LocateVex(G, u);//取该点的位置if (!mp[G.vertices[i].data])//辅助数组,是否访问过{cout << G.vertices[i].data << " ";mp[G.vertices[i].data] = 1;}Arcnode* p;p = G.vertices[i].firstarc;while (p != NULL)//访问该头节点的链表{if (!mp[G.vertices[p->adjvex].data]){cout << G.vertices[p->adjvex].data << " ";mp[G.vertices[p->adjvex].data] = 1;q.push(G.vertices[p->adjvex].data);}p = p->nextarc;}}
}
int main()
{ALGraph G;CreateUDG(G);Print(G);BFS(G, 'A');//从A开始遍历
}
测试数据:
[测试数据]
| 12 16 A B C D E F G H I J K L A D B C B D B F C F D G E B E F E G E H F I G K H I I K J K K L | 测试数据说明: 1.第一行两个整数分别表示无向图中的顶点数m和边数n; 2.第二行中的m个整数,表示m个顶点数据元素(数据类型为字符型; 3.从第三行开始连续n行数据,每一行两个字符表示无向图中的一条边关联的两个顶点数据信息。 4.无向图如下图示:
|
结果运行:

相关文章:
邻接表储存图实现广度优先遍历(C++)
目录 基本要求: 邻接表的结构体: 图的邻接表创建: 图的广度优先遍历(BFS): 邻接表的打印输出: 完整代码: 测试数据: 结果运行: 通过给出的图的顶点和…...
解构赋值详解以及例子
以下是使用解构赋值的所有可能方式的示例代码: 数组解构赋值 const array [1, 2, 3];// 基本形式 const [a, b, c] array; console.log(a); // 1// 只获取部分值 const [, second] array; console.log(second); // 2// 设置默认值 const [d, e, f, g 4] arra…...
Spring Boot 3.0正式发布及新特性解读
目录 【1】Spring Boot 3.0正式发布及新特性依赖调整升级的关键变更支持 GraalVM 原生镜像 Spring Boot 最新支持版本Spring Boo 版本版本 3.1.5前置系统清单三方包升级 Ref 个人主页: 【⭐️个人主页】 需要您的【💖 点赞关注】支持 💯 【1】Spring Boo…...
【tgowt】更新thirdparty
更新完毕后是这样的 之前有过构建但是不能用在owt-p2p项目中,会有崩溃? 【tgowt】cmake转ninja vs构建现在好像都更新到108了 submodule比较麻烦 只修改这里的还不行:一旦git submodule init 后,再改这里的似乎晚了?如果能成功clone就有生成 还必须要改这里的 折腾好几次才…...
金字塔原理小节
目录 第1章 为什么要用金字塔结构 一、归类分组,将思想组织成金字塔 二、奇妙的数字“7” 三、归类分组搭建金字塔 四、找出逻辑关系,抽象概括 五、自上而下表达,结论先行 第1章 为什么要用金字塔结构 如果受众希望通过阅读你的文章、听…...
osg点云加载与渲染
目录 效果 laslib 关键代码 完整代码 效果 las点云读取使用了laslib这个库。 laslib 关键代码 {// 这里演示读取一个 .txt 点云文件const char* lasfile path.c_str();std::ifstream ifs;ifs.open(lasfile, std::ios::in | std::ios::binary);liblas::ReaderFactory f;libl…...
后端架构选择:构建安全强大的知识付费小程序平台
构建知识付费小程序平台需要考虑后端架构,确保系统安全性、性能和可扩展性。以下是一些常见的后端技术和最佳实践,能帮助您构建强大且安全的知识付费小程序平台。 1. 服务器端语言和框架选择 选择流行、成熟的后端语言和框架,如Node.js、P…...
第四节(2):修改WORD中表格数据的方案
《VBA信息获取与处理》教程(10178984)是我推出第六套教程,目前已经是第一版修订了。这套教程定位于最高级,是学完初级,中级后的教程。这部教程给大家讲解的内容有:跨应用程序信息获得、随机信息的利用、电子邮件的发送、VBA互联网…...
Qt中对Udp数据打包发送和接收
有些小伙伴对怎么对Udp的数据打包不太清楚。下面我举例说明。 比如我们要发送一个Person的数据。可以先用一个结构把Person的数据封装。 struct Person {QString name;int age; };下面是udp客户端和服务器端完整的代码例子。 #ifndef UDPCLIENT_H #define UDPCLIENT_H#includ…...
回调地狱 与 Promise(JavaScript)
目录捏 前言一、异步编程二、回调函数三、回调地狱四、Promise1. Promise 简介2. Promise 语法3. Promise 链式 五、总结 前言 想要学习Promise,我们首先要了解异步编程、回调函数、回调地狱三方面知识: 一、异步编程 异步编程技术使你的程序可以在执行一…...
【Android】UI开发中的一些小细节笔记
序言 本篇笔记用于记录在UI界面编写时的一些很简单但是可能一时想不起来的一些小的知识点。(持续更新…) 正文 TextView 1.当文字比较多,需要多行显示的时候,设置每行文字之间的上下的间距 android:lineSpacingExtra根据需要调整这个值设置行间距 …...
第十三章《搞懂算法:神经网络是怎么回事》笔记
目前神经网络技术受到追捧,一方面是由于数据传感设备、数据通信技术和数据存储技术 的成熟与完善,使得低成本采集和存储海量数据得以成为现实;另一方面则是由于计算能力的大幅提升,如图形处理器(Graphics Processing Unit,GPU)在神…...
SpringBoot不同环境加载不同配置文件(dev,sit,uat)
目录 一、springboot的profile配置profile多配置文件 二、maven的profiles策略 我们在使用spring的时候,一般都会有不同的环境需要部署:开发环境、测试环境和验收环境,而不同的环境则会有不同的配置,比如数据库ip。解决这个问题&a…...
2023.11.8 hadoop学习-概述,hdfs dfs的shell命令
目录 1.分布式和集群 2.Hadoop框架 3.版本更新 4.hadoop架构详解 5.页面访问端口 6.Hadoop-HDFS HDFS架构 HDFS副本 7.SHELL命令 8.启动hive服务 1.分布式和集群 分布式: 多台服务器协同配合完成同一个大任务(每个服务器都只完成大任务拆分出来的单独1个子任务)集 群:…...
Azure 机器学习 - 使用自动化机器学习训练计算机视觉模型的数据架构
目录 一、用于训练的数据架构图像分类(二进制/多类)多标签图像分类对象检测实例分段 二、用于联机评分的数据架构输入格式输出格式图像分类(二进制/多类)多标签图像分类对象检测实例分段 在线评分和可解释性 (XAI) 的数据格式支持…...
STM32F4X SDIO(九) 例程讲解-SD卡擦除、读写
STM32F4X SDIO (九) 例程讲解-SD卡擦除、读写 例程讲解-SD卡擦除、读写SD卡擦除CMD32:ERASE_WR_BLK_START命令发送命令响应 CMD33:ERASE_WR_BLK_END命令发送命令响应CMD38:ERASE命令响应 CMD13:SD_CMD_SEND_STATUS命令发送命令回应 SD卡读数据CMD16:SET_…...
【机器学习范式】监督学习,无监督学习,强化学习, 半监督学习,自监督学习,迁移学习,对比分析+详解与示例代码
目录 1. 监督学习 (Supervised Learning): 2. 无监督学习 (Unsupervised Learning): 3. 强化学习 (Reinforcement Learning): 4. 半监督学习 (Semi-Supervised Learning): 5. 自监督学习 (Self-Supervised Learning): 6. 迁移学习 (Transfer Learning): 7 机器学习范式应…...
JUC包下面的四大天王+线程池部分知识
一)Semphore:限流器用我就对了 Java中信号量Semphore是把操作系统原生的信号量封装了一下,本质就是一个计数器,描述了 可用资源的个数,主要涉及到两个操作 如果计数器为0了,继续Р操作,就会出现阻塞等待的情况 P操作:申…...
AGV系统控制位置管理功能
# ファイル: agv_locattion.py # 説明: AGV (Automated Guided Vehicle) の位置情報を管理し、UDPサーバーとして動作するGUIアプリケーションです。 # 必要なライブラリをインポート import tkinter as tk import socket import threading def AGV_handle_submit(canvas, st…...
JavaScript从入门到精通系列第三十三篇:详解正则表达式语法(二)
文章目录 一:正则表达式 1: 检查一个字符串中是否有. 2:第二种关键表达 3:第三种关键表达 编辑4:第四种关键表达 5:第五种关键表达 6:第六种关键表达 二:核心表达二 1&am…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...

