【深度学习】RNN
1. 什么是RNN
循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络(recursive neural network)。
2.RNN的优势
2-1 RNN
在传统的全连接神经网络中,模型结构是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。前提假设都是:元素之间是相互独立的,输入与输出也是独立的。这样就造成了在训练时,全连接神经网络学习不到上下文之间的联系。例如,要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。如下图为全链接神经网络。

RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。如下图为循环神经网络。

循环神经网络的本质是:像人一样拥有记忆的能力。因为我们当前时刻的输出是由记忆和当前时刻的输入决定的,就像你现在大四,你的知识是由大四学到的知识(当前输入)和大三以及大三以前学到的东西的(记忆)的结合,RNN在这点上也类似,神经网络最擅长做的就是通过一系列参数把很多内容整合到一起,然后学习这个参数,因此,他的输出就依赖于当前的输入和记忆。简要的介绍RNN就是一个简要的结构在重复使用。RNN的基础定义如下, 其中Xt:表示t时刻的输入,ot:表示t时刻的输出,ht:表示t时刻的记忆。
![]()
其中使用f()作为激活函数,一般使用tanh,做非线性映射,过滤信息。在预测的时候带着当前时刻的记忆ht去预测。假如要预测“我是中国“的下一个词出现的概率,这里已经很显然了,运用softmax来预测每个词出现的概率,但预测不能直接带用一个矩阵来预测,所有预测的时候还要带一个权重矩阵W,用公式表示为:
![]()
U、V、W作为参数是被所有的cell是共享的。
2-2 RNN的向前传播流程
RNN 一个非常重要的概念就是时刻。首先,它进行前向传递并进行预测。其次,它使用损失函数将预测与基础事实进行比较。损失函数输出一个错误值,该错误值是对网络执行得有多糟糕的估计。最后,它使用该误差值进行反向传播,计算网络中每个节点的梯度。

时刻的循环神经网络的输入包括t和从t_0时刻传递来的隐藏状态h_0。
循环神经网络在时刻接收到输入
之后,隐藏层的值是
,输出值是
。
的值不仅仅取决于
,还取决于
。为了将当前时刻的隐含状态
转化为最终的输出
,循环神经网络还需要另一个全连接层来完成这个过程。这和卷积神经网络中最后的全连接层意义是一样的。(如果不考虑 RNN 的输出还需要一个全连接层的情况,那么
和
的值是一样的)。
3.RNN梯度消失
3-1 梯度消失的定义
网络层之间的梯度(值小于 1.0)重复相乘导致的指数级减小会产生梯度消失,主要是因为网络层数太多,太深,导致梯度无法传播,如果导数小于1,那么随着网络层数的增加梯度更新信息会朝着指数衰减的方式减少,从而导致层数比较浅的权重没有更新,这就是梯度消失。
3-2 梯度消失本质原因
梯度传递的链式法则所导致的,神经网络的反向传播是逐层对激活函数求偏导数并相乘。梯度消失、爆炸,其根本原因在于反向传播训练法则,属于先天不足。
3-3 链式法则
假的时间序列只有三段, [公式] 为给定值,神经元没有激活函数,则RNN最简单的前向传播过程如下:

损失函数为:

对t=3时刻的 U、V、W求损失函数 L3的偏导

化简之后的公式如下:


tanh激活函数可以将实数映射到(-1,1)区间,当tanh的输出极值接近-1和1时,也面临梯度饱和的问题。 tanh和tanh导数的图像如下:

可以看出 tanh‘ 1 ,训练过程中几乎都是小于1的,而W 的值一般会处于0~1之间,当时间序列足够长,即t足够大时,足够多<=1的值累乘,就会造成
趋近于0,这就造成了梯度消失;而当W值很大(一般为初始化不当引起)时,就会趋近于无穷,这就造成了梯度爆炸。
特别说明
Q:为什么梯度消失使RNN的长时记忆失效,会忘记很久之前的信息?
A: 因为RNN的特殊性在于,它的权重是共享的。参数在任何时刻的梯度不会出现问题(因为不依赖于前面的时刻),但是参数
和
每一时刻都由前面所有时刻共同决定,是一个相加的过程。这样会存在一个问题,如果文本很长,计算了若干步之后,计算最前面的导数时,最前面的导数就会消失或爆炸,但当前时刻整体的梯度并不会消失,因为它是求和的过程,当下的梯度总会在,只是前面的梯度没了,但是更新时,由于权值共享,所以整体的梯度还是会更新,通常人们所说的梯度消失就是指的这个,指的是当下梯度更新时,用不到前面的信息了,因为距离长了,前面的梯度就会消失,也就是没有前面的信息了,但要知道,整体的梯度并不会消失因为当下的梯度还在,并没有消失。这样整体的梯度还是会更新,只是将前面的信息给遗忘了。
相关文章:
【深度学习】RNN
1. 什么是RNN 循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递…...
招聘岗位,机会难得
岗位需求 费话不多说,直接上JD: 嵌入式开发工程师: 17:411.计算机、通信等相关专业。 2.熟悉网络基础知识,熟悉802.11a/b/g/n/ac协议,能通过抓包等分析手段排查定位各种wifi相关问题。 3.熟悉路由器主要功能及实现原…...
web打印的几种方法(2023)
在工作中出现web打印的情况是非常多的,其实这也是一个比较烦人的问题,这篇博客整理一下关于Web打印的一些方法或者方式。 1. window.print() 这个方法是用来打印网页的,页面上的其他的元素也会被打印处理,在打印的时候页眉页脚是…...
代码随想录算法训练营day44 | 动态规划之完全背包 518. 零钱兑换 II 377. 组合总和 Ⅳ
day44完全背包基础知识问题描述举个栗子518. 零钱兑换 II1.确定dp数组以及下标的含义2.确定递推公式3.dp数组如何初始化4.确定遍历顺序5.举例推导dp数组377. 组合总和 Ⅳ1.确定dp数组以及下标的含义2.确定递推公式3.dp数组如何初始化4.确定遍历顺序5.举例来推导dp数组完全背包基…...
IntelliJ IDEA 实用插件推荐(包含使用教程)
IntelliJ IDEA 实用插件推荐 背景:电脑重装了,重新下载了最新版的IntelliJ IDEA,感觉默认模式有点枯燥,于是决定从网上下载一些实用美观的插件优化自己以后吃饭的工具,现在推荐的都是目前还能用的(亲身实践…...
WideDeep模型
google提出的Wide&deep模型,将线性模型与DNN很好的结合起来,在提高模型泛化能力的同时,兼顾模型的记忆性。wide&deep这种将线性模型与DNN的并行连接模式,后来称为推荐领域的经典模式,奠定了后面深度学习模型的…...
nacos集群模式+keepalived搭建高可用服务
实际工作中如果nacos这样的核心服务停掉了或者整个服务器宕机了,那整个系统也就gg了,所以像这样的核心服务我们必须要搞个3个或者3个以上的nacos集群部署,实现高可用; 部署高可用版本之前,首先你要会部署单机版的naco…...
吉利「银河」负重突围
吉利控股集团最新公布的数据显示,2022年,吉利控股集团汽车总销量超230万辆,同比增长4.3%。其中,新能源汽车销量超64万辆,同比增长100.3%。 在中国本土市场,2022年吉利集团旗下品牌乘用车总交付量为135.84万…...
QT之图形视图框架概述——Graphics View Framework
QT之图形视图框架概述——Graphics View Framework1. 概述2. 核心类3. 事件传递4. Graphics View 坐标系统5. 参考1. 概述 Graphics View Framework是子Qt 4.2引入的,用来取代之前版本中的QCanvas。Graphics View Framework提拱了用于大量2D图形项的管理和交互的能…...
【SQL开发实战技巧】系列(二十二):数仓报表场景(上) 从分析函数效率一定快吗聊一聊结果集分页和隔行抽样实现方式
系列文章目录 【SQL开发实战技巧】系列(一):关于SQL不得不说的那些事 【SQL开发实战技巧】系列(二):简单单表查询 【SQL开发实战技巧】系列(三):SQL排序的那些事 【SQL开发实战技巧…...
小米无线AR眼镜探索版细节汇总
在MWC 2023期间,小米正式发布了一款无线AR眼镜,虽然还没看过实机,但XDA提前上手体验,我们从中进行总结。首先我要说的是,小米这款眼镜和高通无线AR眼镜参考设计高度重叠,产品卖点几乎一致,只是增…...
Web3中文|Litra:简洁而优美的NFT流动性协议,能给NFT市场带来什么?
2021年,NFT元年2021年,无疑是 NFT 的“元年”。这一年推特创始人的首条推特被拍出250万美元,加密艺术家Beeple的数字作品“First 5000 Days”在佳士得以6900万美元价格成交,无聊猿最高上涨了1800倍。2021年11月,在Goog…...
SSL证书对虚拟主机的用处有哪些?
虚拟主机是指在同一台服务器上,通过不同的域名或IP地址为多个网站提供服务的一种网络主机。而SSL证书则是一种数字证书,它用于加密网站与用户之间的通信,确保数据传输的安全性和完整性。在虚拟主机上,SSL证书有以下几个用处&#…...
SpringCloud之MQ笔记分享
MQ异步通信 初始MQ 同步通信 优点:时效性较强,可以以及得到结果 Feign就属于同步方式–问题: 耦合问题性能下降(中间的等待时间)资源浪费级联失败 异步通信 优点 耦合度低性能提升,吞吐量高故障隔离…...
动态规划背包问题
背包问题的分类 拿到背包问题,最重要的是会归类到哪一种背包问题中,常见的考题里主要是01背包和完全背包,leetcode上连多重背包的题目都没有。实际完全背包问题就是01背包的一种。 对一和零这道题,很多人容易把m看成一个背包,n看成另一个背包,从而当做多重背包。然而这…...
OpenCV4.x图像处理实例-张嘴和闭嘴检测
张嘴和闭嘴检测 在活体验证中,张嘴和闭嘴检测也是一个重要的环节。本文将介绍如何通过检测人脸上唇和下唇的关键点,并计算上唇和下唇的关键点的距离来检测当前人脸状态是否处于张嘴或闭嘴。 张嘴和闭嘴检测主要步骤如下: 第一步,安装依赖库 示例中使用到OpenCV和MediaP…...
软考高级系统分析师系列论文之十二:论实时控制系统与企业信息系统集成在工业控制的常规应用
软考高级系统分析师系列论文之十二:论实时控制系统与企业信息系统集成在工业控制的常规应用 一、摘要二、正文三、总结一、摘要 本文通过“工控组态软件”项目的开发,着重讨论实时系统与信息系统的集成。近年来,国内外的组态软件取得了很大的发展,已广泛应用于企业生产。组…...
蓝桥杯入门即劝退(二十三)货物摆放问题
欢迎关注点赞评论,共同学习,共同进步! ------持续更新蓝桥杯入门系列算法实例-------- 如果你也喜欢Java和算法,欢迎订阅专栏共同学习交流! 你的点赞、关注、评论、是我创作的动力! -------希望我的文章…...
经验之谈——指标异常了怎么办?
本文参考了数据万花筒的文章,结合我自己工作经验。希望给大家一些帮助。 指标异常排查,是数据分析师的工作重点之一,是各行各业数据分析师都绕不开的话题。 本文试图回答: 1、指标波动的影响因素有哪些? 2、如何快速…...
影视领域解说电影怎样做才会更加出彩?
还有没有想要做影视解说的新手朋友~给大家分享一下影视解说快速上手的软件工具! 一、解说文案 文案是影视解说中最重要的步骤,如果你无法保证文案足够优秀,那么请务必让所有语句通顺,整体通篇下来让人知道你是在讲一个完整的故事…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能
指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...
webpack面试题
面试题:webpack介绍和简单使用 一、webpack(模块化打包工具)1. webpack是把项目当作一个整体,通过给定的一个主文件,webpack将从这个主文件开始找到你项目当中的所有依赖文件,使用loaders来处理它们&#x…...
