当前位置: 首页 > news >正文

代码随想录算法训练营Day 49 || 123.买卖股票的最佳时机III 、188.买卖股票的最佳时机IV

123.买卖股票的最佳时机III

力扣题目链接(opens new window)

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:

  • 输入:prices = [3,3,5,0,0,3,1,4]

  • 输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3。

  • 示例 2:

  • 输入:prices = [1,2,3,4,5]

  • 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

  • 示例 3:

  • 输入:prices = [7,6,4,3,1]

  • 输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为0。

  • 示例 4:

  • 输入:prices = [1] 输出:0

提示:

  • 1 <= prices.length <= 10^5
  • 0 <= prices[i] <= 10^5

解题思路:

  1. 定义状态: 由于最多可以进行两笔交易,我们需要跟踪四个状态:第一次买入(first_buy)、第一次卖出(first_sell)、第二次买入(second_buy)、第二次卖出(second_sell)。

  2. 初始化状态:

    • first_buy 初始化为负无穷大,因为还没有进行任何买入操作。
    • first_sellsecond_buysecond_sell 都初始化为0,因为初始利润为0。
  3. 状态转移:

    • 对于每一天的价格,更新上述四个状态。
    • first_buy:选择之前的 first_buy 或者当天的价格(负数,因为是花费)中的较大者。
    • first_sell:选择之前的 first_sell 或者今天的价格加上 first_buy(代表卖出)中的较大者。
    • second_buy:选择之前的 second_buy 或者 first_sell 减去今天的价格中的较大者。
    • second_sell:选择之前的 second_sell 或者今天的价格加上 second_buy 中的较大者。
  4. 计算结果:

    • 遍历完所有价格后,second_sell 就是最大利润。
class Solution:def maxProfit(self, prices: List[int]) -> int:if not prices:return 0first_buy, first_sell = -float('inf'), 0second_buy, second_sell = -float('inf'), 0for price in prices:first_buy = max(first_buy, -price)  # 第一次买入的最佳选择first_sell = max(first_sell, first_buy + price)  # 第一次卖出的最佳选择second_buy = max(second_buy, first_sell - price)  # 第二次买入的最佳选择second_sell = max(second_sell, second_buy + price)  # 第二次卖出的最佳选择return second_sell  # 返回最大利润

188.买卖股票的最佳时机IV

力扣题目链接

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:

  • 输入:k = 2, prices = [2,4,1]

  • 输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2。

  • 示例 2:

  • 输入:k = 2, prices = [3,2,6,5,0,3]

  • 输出:7 解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

提示:

  • 0 <= k <= 100
  • 0 <= prices.length <= 1000
  • 0 <= prices[i] <= 1000

解题思路:

  1. 状态定义: 定义 dp[i][j] 作为一个二维数组,其中 i 表示天数,j 表示交易次数(每次交易包括买和卖两个动作)。dp[i][j] 表示第 i 天完成 j 笔交易能获得的最大利润。

  2. 初始化:

    • 对于 dp[0][..](即第0天),无论交易次数如何,利润都是0,因为没有交易发生。
    • 对于 dp[..][0](即没有交易),无论天数如何,利润都是0。
  3. 状态转移:

    • 需要决定第 i 天是买入、卖出还是不操作。这可以通过比较不同选择下的利润来决定。
    • 对于买入操作,我们要找到之前某天 m,使得 dp[m][j-1] - prices[i](即第 m 天完成 j-1 笔交易后的利润减去第 i 天的股价)最大。
    • 对于卖出操作,我们要找到之前某天 m,使得 dp[m][j-1] + prices[i] 最大。
    • 对于不操作,直接保持前一天的状态,即 dp[i][j] = dp[i-1][j]
  4. 结果计算:

    • 最后 dp[n-1][k](其中 n 是天数)就是在给定的条件下可以获得的最大利润。
class Solution:def maxProfit(self, k: int, prices: List[int]) -> int:if not prices:return 0n = len(prices)if k >= n // 2:return self.maxProfitInf(prices)dp = [[0] * (k + 1) for _ in range(n)]for j in range(1, k + 1):max_diff = -prices[0]for i in range(1, n):dp[i][j] = max(dp[i-1][j], prices[i] + max_diff)max_diff = max(max_diff, dp[i-1][j-1] - prices[i])return dp[-1][-1]def maxProfitInf(self, prices: List[int]) -> int:profit = 0for i in range(1, len(prices)):if prices[i] > prices[i-1]:profit += prices[i] - prices[i-1]return profit

 

 

相关文章:

代码随想录算法训练营Day 49 || 123.买卖股票的最佳时机III 、188.买卖股票的最佳时机IV

123.买卖股票的最佳时机III 力扣题目链接(opens new window) 给定一个数组&#xff0c;它的第 i 个元素是一支给定的股票在第 i 天的价格。 设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。 注意&#xff1a;你不能同时参与多笔交易&#xff08;你必须…...

threejs(11)-精通着色器编程(难点)2

一、shader着色器编写高级图案 小日本国旗 precision lowp float; varying vec2 vUv; float strength step(0.5,distance(vUv,vec2(0.5))0.25) ; gl_FragColor vec4(strength,strength,strength,strength);绘制圆 precision lowp float; varying vec2 vUv; float strength 1…...

配置cuda和cudnn出现 libcudnn.so.8 is not a symbolic link问题

cuda版本为11.2 问题如图所示&#xff1a; 解决办法&#xff1a; sudo ln -sf /usr/local/cuda-11.2/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.1.1 /usr/local/cuda-11.2/targets/x86_64-linux/lib/libcudnn_adv_train.so.8 sudo ln -sf /usr/local/cuda-11.2/targ…...

“目标值排列匹配“和“背包组合问题“的区别和leetcode例题详解

1 目标值排列匹配 1.1 从目标字符串的角度来看&#xff0c;LC139是一个排列问题&#xff0c;因为最终目标子串的各个字符的顺序是固定的&#xff1f; 当我们从目标字符串 s 的角度来看 LC139 “单词拆分” 问题&#xff0c;确实可以认为它涉及到排列的概念&#xff0c;但这种…...

火星加载WMTS服务

这是正常的加载瓦片 http://192.168.1.23:8008/geoserver/mars3d/gwc/service/wmts?tilematrixEPSG%3A4326%3A7&layermars3d%3Abuffer&style&tilerow46&tilecol197&tilematrixsetEPSG%3A4326&formatimage%2Fpng&serviceWMTS&version1.0.0&…...

为什么要学习去使用云服务器,外网 IP能干什么,MAC使用Termius连接阿里云服务器。保姆级教学

目录 引言 可能有人想问为什么要学习云服务器&#xff1f; &#xff08;获取Linux环境&#xff0c;获得外网IP) 二、安装教程 引言 可能有人想问为什么要学习云服务器&#xff1f; &#xff08;获取Linux环境&#xff0c;获得外网IP) 1.虚拟机&#xff08;下策&#xff09; …...

VS c++多文件编译

前言&#xff1a;记录下我这个菜鸡学习的过程&#xff0c;如有错误恳请指出&#xff0c;不胜感激&#xff01; 1.简单多文件编译调试 文件目录&#xff1a; 编译&#xff1a; -g选项是告诉编译器生成调试信息&#xff0c;这样可以在程序崩溃或出现错误时更容易地进行调试。这…...

JVM关键指标监控(调优)

JVM 99%情况下不需要调优 使用性能更好的垃圾回收器 核心指标 针对单台服务器而言&#xff1a; jvm.gc.time: 每分钟GC耗时在1s以内 500ms以内最佳 jvm.gc.meantime: 每次YGC耗时在100ms以内&#xff0c;50ms以内最佳 jvm.fullgc.count: FGC(老生代垃圾回收)最多几小时1次&…...

【Proteus仿真】【Arduino单片机】LCD1602-IIC液晶显示

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真Arduino单片机控制器&#xff0c;使用PCF8574、LCD1602液晶等。 主要功能&#xff1a; 系统运行后&#xff0c;LCD1602液晶显示各种效果。 二、软件设计 /* 作者&#xff1a;嗨小…...

skynet学习笔记03— 服务

01、API newservice(name, ...)&#xff1a; 阻塞的形势启动一个名为 name 的新服务&#xff0c;待start函数执行完后会返回这个服务的地址。uniqueservice(name, ...)&#xff1a;针对于当前节点&#xff0c;启动一个唯一服务&#xff08;相当于单例&#xff09;&#xff0c;…...

34 Feign最佳实践

2.4.2.抽取方式 将Feign的Client抽取为独立模块&#xff0c;并且把接口有关的POJO、默认的Feign配置都放到这个模块中&#xff0c;提供给所有消费者使用。 例如&#xff0c;将UserClient、User、Feign的默认配置都抽取到一个feign-api包中&#xff0c;所有微服务引用该依赖包…...

软文推广中如何搭建媒体矩阵

媒体矩阵简单理解就是在不同的媒体平台上&#xff0c;根据运营目标和需求&#xff0c;建立起全面系统的媒体布局&#xff0c;进行多平台同步运营。接下来媒介盒子就来和大家聊聊&#xff0c;企业在软文推广过程中为什么需要搭建媒体矩阵&#xff0c;又该如何搭建媒体矩阵。 一、…...

Unity地面交互效果——5、角色足迹的制作

大家好&#xff0c;我是阿赵。   之前几篇文章&#xff0c;已经介绍了地面交互的轨迹做法。包括了法线、曲面细分还有顶点偏移。Shader方面的内容已经说完了&#xff0c;不过之前都是用一个球来模拟轨迹&#xff0c;这次来介绍一下&#xff0c;怎样和角色动作结合&#xff0c…...

Centos8安装出错问题

科普介绍&#xff1a; CentOS 8 是一个基于 Linux 的操作系统&#xff0c;是 Red Hat Enterprise Linux &#xff08;RHEL&#xff09;的免费和开源版本。它提供了稳定、安全和可靠的基础设施&#xff0c;适用于服务器和桌面环境。CentOS 8 是 CentOS 系列中最新的版本&#x…...

计算机网络技术

深入浅出计算机网络 微课视频_哔哩哔哩_bilibili 第一章概述 1.1 信息时代的计算机网络 1. 计算机网络各类应用 2. 计算机网络带来的负面问题 3. 我国互联网发展情况 1.2 因特网概述 1. 网络、互连网&#xff08;互联网&#xff09;与因特网的区别与关系 如图所示&#xff0…...

当电脑桌面黑屏,而你只有一个鼠标该怎么办(重启方法的平替)

作为一个打工人 电脑是不是黑屏简直是routine了 我们都知道重启能解决一切问题 但是&#xff01;&#xff01; 如果你只有一个鼠标 电脑因为种种原因没法重启 该怎么办呢&#xff1f; 别慌 下面的方法非常灵验 1.按住ctrlShiftEsc 调出任务管理器;此项为必须&#xf…...

Leetcode2833. 距离原点最远的点

Every day a Leetcode 题目来源&#xff1a;2833. 距离原点最远的点 解法1&#xff1a;贪心 要使得到达的距离原点最远的点&#xff0c;就看 left 和 right 谁大&#xff0c;将 left 和 right 作为矢量相加&#xff0c;再往同方向加上 underline。 答案即为 abs(left - rig…...

chrome 的vue3的开发者devtool不起作用

问题&#xff1a; 刚刚vue2升级到vue3&#xff0c;旧的devtool识别不了vue3数据。 原因&#xff1a; devtool版本过低。升级到最新。 解决&#xff1a; 去github下载vuetool项目代码&#xff1a; GitHub - vuejs/devtools: ⚙️ Browser devtools extension for debugging…...

Redis数据结构七之listpack和quicklist

本文首发于公众号&#xff1a;Hunter后端 原文链接&#xff1a;Redis数据结构七之listpack和quicklist 本篇笔记介绍 listpack 和 quicklist 两种结构 按照顺序&#xff0c;本来应该先介绍 quicklist 的结构&#xff0c;quicklist 在 7.0 之前的版本是由双向链表和压缩列表构成…...

单词规律问题

给定一种规律 pattern 和一个字符串 s &#xff0c;判断 s 是否遵循相同的规律。 这里的 遵循 指完全匹配&#xff0c;例如&#xff0c; pattern 里的每个字母和字符串 s 中的每个非空单词之间存在着双向连接的对应规律。 示例1: 输入: pattern “abba”, s “dog cat cat d…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...