当前位置: 首页 > news >正文

Milvus Cloud ——Agent 的展望

Agent 的展望

目前,LLM Agent 大多是处于实验和概念验证的阶段,持续提升 Agent 的能力才能让它真正从科幻走向现实。当然,我们也可以看到,围绕 LLM Agent 的生态也已经开始逐渐丰富,大部分工作都可以归类到以下三个方面进行探索:

  • Agent模型

AgentBench[4] 指出了不同的 LLM 对于 Agent 的处理能力有很大区别,当前的 gpt-4(0613)版本以极大的优势领先于同类竞品,LLM 本身的逻辑推理能力以及更长的 prompt 处理能力都会是 Agent 中极其重要的因素。

sToolLLM[5] 则使用轻量级的 LLaMA 向更加复杂的大模型学习理解 API 和使用 API 的能力,希望能够将这种能力运用在更轻量的模型上。

  • Agent 框架

由 Lilian Weng 列出来的每一个组件都有探索的空间,目前学术探索较多的是利用框架提升 LLM 推理的能力,从 COT[6]ReAct[7]

相关文章:

Milvus Cloud ——Agent 的展望

Agent 的展望 目前,LLM Agent 大多是处于实验和概念验证的阶段,持续提升 Agent 的能力才能让它真正从科幻走向现实。当然,我们也可以看到,围绕 LLM Agent 的生态也已经开始逐渐丰富,大部分工作都可以归类到以下三个方面进行探索: Agent模型 AgentBench[4] 指出了不同的 L…...

EM@比例恒等式@分式恒等式

文章目录 比例恒等式(分式恒等式)分式等式链例 比例恒等式(分式恒等式) 设 a b c d \frac{a}{b}\frac{c}{d} ba​dc​(0)令这个比值为 k k k,则 a k b akb akb(0-1), c k d ckd ckd(0-2),以下恒等式在表达式有意义的情形下成立(例如分母不为0) 合比定理: a b b c d d \f…...

使用米联客FPGA开发板进行光口开发时遇到的问题总结

使用的开发板型号:米联客MA703FA, 实物图如下 FPGA型号为a35t 米联客提供的开发板资料中的FPGA型号为a100,所以要想使用开发板例程必须进行FPGA的重新选择。如下图 通过对开发板原理图的分析,例程代码不用做任何修改就可使用&am…...

【chat】 1:Ubuntu 20.04.3 编译安装moduo master分支

muduo 基于reactor反应堆模型的多线程C++网络库大佬的官方仓库有cpp17分支看了下cmakelist文件里面还是要依赖不少库,比如boost protobuf而且cpp17 似乎 是2021年的master 是2022更新的那么还是选择master吧。ubuntu版本 Ubuntu 20.04.3 root@k8s-master-2K4G:~# uname -a Lin…...

C#基于inpoutx64读写ECRAM硬件信息

inpoutx64.dll分享路径: 链接:https://pan.baidu.com/s/1rOt0xtt9EcsrFQtf7S91ag 提取码:7om1 1.InpOutManager: using System; using System.Collections.Generic; using System.Linq; using System.Runtime.InteropServi…...

图论13-最小生成树-Kruskal算法+Prim算法

文章目录 1 最小生成树2 最小生成树Kruskal算法的实现2.1 算法思想2.2 算法实现2.2.1 如果图不联通,直接返回空,该图没有mst2.2.2 获得图中的所有边,并且进行排序2.2.2.1 Edge类要实现Comparable接口,并重写compareTo方法 2.2.3 取…...

免费博客搭建笔记

title: 免费博客搭建笔记 tags: 博客搭建 本次是对自己在网上学习github搭建一个 👇个人免费静态网站的总结当然不是很完美👇 Bow to the new king iYANG (yangsongl1n.github.io) 接着我会从我的写笔记的个人习惯来逐步介绍如何搭建这个网站 1.写笔…...

网络运维Day10

文章目录 SHELL基础查看有哪些解释器使用usermod修改用户解释器BASH基本特性 shell脚本的设计与运行编写问世脚本脚本格式规范执行shell脚本方法一方法二实验 变量自定义变量环境变量位置变量案例 预定义变量 变量的扩展运用多种引号的区别双引号的应用单引号的应用反撇号或$()…...

@Cacheable 注解的 @CacheManager 示例

pom.xml 依赖包&#xff1a; <dependency><groupId>org.springframework.data</groupId><artifactId>spring-data-redis</artifactId></dependency><dependency><groupId>redis.clients</groupId><artifactId>jed…...

springboot二维码示例

pom.xml依赖 <dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.8.16</version></dependency><dependency><groupId>com.google.zxing</groupId><artifactId>…...

nacos做服务配置和服务器发现

一、创建项目 1、创建一个spring-boot的项目 2、创建三个模块file、system、gateway模块 3、file和system分别配置启动信息,并且创建一个简单的控制器 server.port9000 spring.application.namefile server.servlet.context-path/file4、在根目录下引入依赖 <properties&g…...

KCC@广州与 TiDB 社区联手—广州开源盛宴

10月21日&#xff0c;KCC广州与 TiDB 社区联手&#xff0c;在海珠区保利中悦广场 29 楼召开了一次难忘的开源盛宴。这不仅仅是 KCC广州的又一次线下见面&#xff0c;更代表着与 TiDB 社区及广州技术社区的首次深度合作。 活动的策划与组织由 KCC广州负责人 - 惠世冀、PingCAP 的…...

CSS3 分页、框大小、弹性盒子

一、CSS3分页&#xff1a; 网站有很多个页面&#xff0c;需要使用分页来为每个页面做导航。示例&#xff1a; <style> ul.pagination { display: inline-block; padding: 0; margin: 0; } ul.pagination li {display: inline;} ul.pagination li a { color: black; f…...

GEE问题——GEE中循环的使用map()函数,以提取指定范围内的逐日的二氧化氮平均浓度为例

问题: 我有一个简单的代码,可以帮助计算德克萨斯州每个县的对流层二氧化氮平均浓度。目前,我可以将其导出为我指定的任何日期范围的 csv 表,但我想 1) 提取每天平均值,例如 3 个月(2020 年 3 月至 2020 年 5 月,约 90 天)--手动多次运行肯定不是办法,而且我的编码技…...

短信验证码实现(阿里云)

如果实现短信验证&#xff0c;上教程&#xff0c;这里用的阿里云短信服务 短信服务 (aliyun.com) 进入短信服务后开通就行&#xff0c;可以体验100条免费&#xff0c;刚好测试用 这里由自定义和专用&#xff0c;测试的话就选择专用吧&#xff0c;自定义要审核&#xff0c; Se…...

如何对element弹窗进行二次封装

方式一使用$refs 个人比较喜欢用这种的 通过$refs打开的同时 还能给弹窗组件传参 一些框架使用的也是这种方式 父组件 <template><div><el-button type"text" click"handleDialogOpen">打开嵌套表单的 Dialog</el-button><Dia…...

【微服务专题】手写模拟SpringBoot

目录 前言阅读对象阅读导航前置知识笔记正文一、工程项目准备1.1 新建项目1.1 pom.xml1.2 业务模拟 二、模拟SpringBoot启动&#xff1a;好戏开场2.1 启动配置类2.1.1 shen-base-springboot新增2.1.2 shen-example客户端新增启动类 三、run方法的实现3.1 步骤一&#xff1a;启动…...

七个优秀微服务跟踪工具

随着微服务架构复杂性的增加&#xff0c;在问题出现时确定问题的根本原因变得更具挑战性。日志和指标为我们提供了有用的信息&#xff0c;但并不能提供系统的完整概况。这就是跟踪的用武之地。通过跟踪&#xff0c;开发人员可以监控微服务之间的请求进度&#xff0c;从而使他们…...

redis 问题解决 1

1.1 常见考点 1、Redis 为何这么快? Redis 是一款基于内存的数据结构存储系统,它之所以能够提供非常快的读写性能,主要是因为以下几个方面的原因: 基于内存存储:Redis 所有的数据都存储在内存中,而内存的访问速度比磁盘要快得多。因此,Redis 可以提供非常快的读写性能…...

odoo16前端框架源码阅读——启动、菜单、动作

odoo16前端框架源码阅读——启动、菜单、动作 目录&#xff1a;addons/web/static/src 1、main.js odoo实际上是一个单页应用&#xff0c;从名字看&#xff0c;这是前端的入口文件&#xff0c;文件内容也很简单。 /** odoo-module **/import { startWebClient } from "…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

在树莓派上添加音频输入设备的几种方法

在树莓派上添加音频输入设备可以通过以下步骤完成&#xff0c;具体方法取决于设备类型&#xff08;如USB麦克风、3.5mm接口麦克风或HDMI音频输入&#xff09;。以下是详细指南&#xff1a; 1. 连接音频输入设备 USB麦克风/声卡&#xff1a;直接插入树莓派的USB接口。3.5mm麦克…...

实战设计模式之模板方法模式

概述 模板方法模式定义了一个操作中的算法骨架&#xff0c;并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下&#xff0c;重新定义算法中的某些步骤。简单来说&#xff0c;就是在一个方法中定义了要执行的步骤顺序或算法框架&#xff0c;但允许子类…...

java高级——高阶函数、如何定义一个函数式接口类似stream流的filter

java高级——高阶函数、stream流 前情提要文章介绍一、函数伊始1.1 合格的函数1.2 有形的函数2. 函数对象2.1 函数对象——行为参数化2.2 函数对象——延迟执行 二、 函数编程语法1. 函数对象表现形式1.1 Lambda表达式1.2 方法引用&#xff08;Math::max&#xff09; 2 函数接口…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...