当前位置: 首页 > news >正文

diffusers库中stable Diffusion模块的解析

diffusers库中stable Diffusion模块的解析

diffusers中,stable Diffusion v1.5主要由以下几个部分组成

Out[3]: dict_keys(['vae', 'text_encoder', 'tokenizer', 'unet', 'scheduler', 'safety_checker', 'feature_extractor'])

下面给出具体的结构说明。

“text_encoder block”

CLIPTextModel((text_model): CLIPTextTransformer((embeddings): CLIPTextEmbeddings((token_embedding): Embedding(49408, 768)(position_embedding): Embedding(77, 768))(encoder): CLIPEncoder((layers): ModuleList((0-11): 12 x CLIPEncoderLayer((self_attn): CLIPAttention((k_proj): Linear(in_features=768, out_features=768, bias=True)(v_proj): Linear(in_features=768, out_features=768, bias=True)(q_proj): Linear(in_features=768, out_features=768, bias=True)(out_proj): Linear(in_features=768, out_features=768, bias=True))(layer_norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)(mlp): CLIPMLP((activation_fn): QuickGELUActivation()(fc1): Linear(in_features=768, out_features=3072, bias=True)(fc2): Linear(in_features=3072, out_features=768, bias=True))(layer_norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True))))(final_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True))
)

“vae block”

AutoencoderKL((encoder): Encoder((conv_in): Conv2d(3, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(down_blocks): ModuleList((0): DownEncoderBlock2D((resnets): ModuleList((0-1): 2 x ResnetBlock2D((norm1): GroupNorm(32, 128, eps=1e-06, affine=True)(conv1): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(norm2): GroupNorm(32, 128, eps=1e-06, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()))(downsamplers): ModuleList((0): Downsample2D((conv): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(2, 2)))))(1): DownEncoderBlock2D((resnets): ModuleList((0): ResnetBlock2D((norm1): GroupNorm(32, 128, eps=1e-06, affine=True)(conv1): LoRACompatibleConv(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()(conv_shortcut): LoRACompatibleConv(128, 256, kernel_size=(1, 1), stride=(1, 1)))(1): ResnetBlock2D((norm1): GroupNorm(32, 256, eps=1e-06, affine=True)(conv1): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()))(downsamplers): ModuleList((0): Downsample2D((conv): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(2, 2)))))(2): DownEncoderBlock2D((resnets): ModuleList((0): ResnetBlock2D((norm1): GroupNorm(32, 256, eps=1e-06, affine=True)(conv1): LoRACompatibleConv(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(norm2): GroupNorm(32, 512, eps=1e-06, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()(conv_shortcut): LoRACompatibleConv(256, 512, kernel_size=(1, 1), stride=(1, 1)))(1): ResnetBlock2D((norm1): GroupNorm(32, 512, eps=1e-06, affine=True)(conv1): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(norm2): GroupNorm(32, 512, eps=1e-06, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()))(downsamplers): ModuleList((0): Downsample2D((conv): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(2, 2)))))(3): DownEncoderBlock2D((resnets): ModuleList((0-1): 2 x ResnetBlock2D((norm1): GroupNorm(32, 512, eps=1e-06, affine=True)(conv1): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(norm2): GroupNorm(32, 512, eps=1e-06, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()))))(mid_block): UNetMidBlock2D((attentions): ModuleList((0): Attention((group_norm): GroupNorm(32, 512, eps=1e-06, affine=True)(to_q): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)(to_k): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)(to_v): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)(to_out): ModuleList((0): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)(1): Dropout(p=0.0, inplace=False))))(resnets): ModuleList((0-1): 2 x ResnetBlock2D((norm1): GroupNorm(32, 512, eps=1e-06, affine=True)(conv1): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(norm2): GroupNorm(32, 512, eps=1e-06, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU())))(conv_norm_out): GroupNorm(32, 512, eps=1e-06, affine=True)(conv_act): SiLU()(conv_out): Conv2d(512, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(decoder): Decoder((conv_in): Conv2d(4, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(up_blocks): ModuleList((0-1): 2 x UpDecoderBlock2D((resnets): ModuleList((0-2): 3 x ResnetBlock2D((norm1): GroupNorm(32, 512, eps=1e-06, affine=True)(conv1): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(norm2): GroupNorm(32, 512, eps=1e-06, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()))(upsamplers): ModuleList((0): Upsample2D((conv): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))))(2): UpDecoderBlock2D((resnets): ModuleList((0): ResnetBlock2D((norm1): GroupNorm(32, 512, eps=1e-06, affine=True)(conv1): LoRACompatibleConv(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()(conv_shortcut): LoRACompatibleConv(512, 256, kernel_size=(1, 1), stride=(1, 1)))(1-2): 2 x ResnetBlock2D((norm1): GroupNorm(32, 256, eps=1e-06, affine=True)(conv1): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()))(upsamplers): ModuleList((0): Upsample2D((conv): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))))(3): UpDecoderBlock2D((resnets): ModuleList((0): ResnetBlock2D((norm1): GroupNorm(32, 256, eps=1e-06, affine=True)(conv1): LoRACompatibleConv(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(norm2): GroupNorm(32, 128, eps=1e-06, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()(conv_shortcut): LoRACompatibleConv(256, 128, kernel_size=(1, 1), stride=(1, 1)))(1-2): 2 x ResnetBlock2D((norm1): GroupNorm(32, 128, eps=1e-06, affine=True)(conv1): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(norm2): GroupNorm(32, 128, eps=1e-06, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()))))(mid_block): UNetMidBlock2D((attentions): ModuleList((0): Attention((group_norm): GroupNorm(32, 512, eps=1e-06, affine=True)(to_q): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)(to_k): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)(to_v): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)(to_out): ModuleList((0): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)(1): Dropout(p=0.0, inplace=False))))(resnets): ModuleList((0-1): 2 x ResnetBlock2D((norm1): GroupNorm(32, 512, eps=1e-06, affine=True)(conv1): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(norm2): GroupNorm(32, 512, eps=1e-06, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU())))(conv_norm_out): GroupNorm(32, 128, eps=1e-06, affine=True)(conv_act): SiLU()(conv_out): Conv2d(128, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(quant_conv): Conv2d(8, 8, kernel_size=(1, 1), stride=(1, 1))(post_quant_conv): Conv2d(4, 4, kernel_size=(1, 1), stride=(1, 1))
)

“unet block”

UNet2DConditionModel((conv_in): Conv2d(4, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(time_proj): Timesteps()(time_embedding): TimestepEmbedding((linear_1): LoRACompatibleLinear(in_features=320, out_features=1280, bias=True)(act): SiLU()(linear_2): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True))(down_blocks): ModuleList((0): CrossAttnDownBlock2D((attentions): ModuleList((0-1): 2 x Transformer2DModel((norm): GroupNorm(32, 320, eps=1e-06, affine=True)(proj_in): LoRACompatibleConv(320, 320, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(attn1): Attention((to_q): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)(to_k): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)(to_v): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)(to_out): ModuleList((0): LoRACompatibleLinear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(attn2): Attention((to_q): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)(to_k): LoRACompatibleLinear(in_features=768, out_features=320, bias=False)(to_v): LoRACompatibleLinear(in_features=768, out_features=320, bias=False)(to_out): ModuleList((0): LoRACompatibleLinear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(ff): FeedForward((net): ModuleList((0): GEGLU((proj): LoRACompatibleLinear(in_features=320, out_features=2560, bias=True))(1): Dropout(p=0.0, inplace=False)(2): LoRACompatibleLinear(in_features=1280, out_features=320, bias=True)))))(proj_out): LoRACompatibleConv(320, 320, kernel_size=(1, 1), stride=(1, 1))))(resnets): ModuleList((0-1): 2 x ResnetBlock2D((norm1): GroupNorm(32, 320, eps=1e-05, affine=True)(conv1): LoRACompatibleConv(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=320, bias=True)(norm2): GroupNorm(32, 320, eps=1e-05, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()))(downsamplers): ModuleList((0): Downsample2D((conv): LoRACompatibleConv(320, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)))))(1): CrossAttnDownBlock2D((attentions): ModuleList((0-1): 2 x Transformer2DModel((norm): GroupNorm(32, 640, eps=1e-06, affine=True)(proj_in): LoRACompatibleConv(640, 640, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)(attn1): Attention((to_q): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)(to_k): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)(to_v): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)(to_out): ModuleList((0): LoRACompatibleLinear(in_features=640, out_features=640, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)(attn2): Attention((to_q): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)(to_k): LoRACompatibleLinear(in_features=768, out_features=640, bias=False)(to_v): LoRACompatibleLinear(in_features=768, out_features=640, bias=False)(to_out): ModuleList((0): LoRACompatibleLinear(in_features=640, out_features=640, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)(ff): FeedForward((net): ModuleList((0): GEGLU((proj): LoRACompatibleLinear(in_features=640, out_features=5120, bias=True))(1): Dropout(p=0.0, inplace=False)(2): LoRACompatibleLinear(in_features=2560, out_features=640, bias=True)))))(proj_out): LoRACompatibleConv(640, 640, kernel_size=(1, 1), stride=(1, 1))))(resnets): ModuleList((0): ResnetBlock2D((norm1): GroupNorm(32, 320, eps=1e-05, affine=True)(conv1): LoRACompatibleConv(320, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=640, bias=True)(norm2): GroupNorm(32, 640, eps=1e-05, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()(conv_shortcut): LoRACompatibleConv(320, 640, kernel_size=(1, 1), stride=(1, 1)))(1): ResnetBlock2D((norm1): GroupNorm(32, 640, eps=1e-05, affine=True)(conv1): LoRACompatibleConv(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=640, bias=True)(norm2): GroupNorm(32, 640, eps=1e-05, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()))(downsamplers): ModuleList((0): Downsample2D((conv): LoRACompatibleConv(640, 640, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)))))(2): CrossAttnDownBlock2D((attentions): ModuleList((0-1): 2 x Transformer2DModel((norm): GroupNorm(32, 1280, eps=1e-06, affine=True)(proj_in): LoRACompatibleConv(1280, 1280, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(attn1): Attention((to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)(to_k): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)(to_v): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)(to_out): ModuleList((0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(attn2): Attention((to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)(to_k): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)(to_v): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)(to_out): ModuleList((0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(ff): FeedForward((net): ModuleList((0): GEGLU((proj): LoRACompatibleLinear(in_features=1280, out_features=10240, bias=True))(1): Dropout(p=0.0, inplace=False)(2): LoRACompatibleLinear(in_features=5120, out_features=1280, bias=True)))))(proj_out): LoRACompatibleConv(1280, 1280, kernel_size=(1, 1), stride=(1, 1))))(resnets): ModuleList((0): ResnetBlock2D((norm1): GroupNorm(32, 640, eps=1e-05, affine=True)(conv1): LoRACompatibleConv(640, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()(conv_shortcut): LoRACompatibleConv(640, 1280, kernel_size=(1, 1), stride=(1, 1)))(1): ResnetBlock2D((norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)(conv1): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()))(downsamplers): ModuleList((0): Downsample2D((conv): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)))))(3): DownBlock2D((resnets): ModuleList((0-1): 2 x ResnetBlock2D((norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)(conv1): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()))))(up_blocks): ModuleList((0): UpBlock2D((resnets): ModuleList((0-2): 3 x ResnetBlock2D((norm1): GroupNorm(32, 2560, eps=1e-05, affine=True)(conv1): LoRACompatibleConv(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()(conv_shortcut): LoRACompatibleConv(2560, 1280, kernel_size=(1, 1), stride=(1, 1))))(upsamplers): ModuleList((0): Upsample2D((conv): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))))(1): CrossAttnUpBlock2D((attentions): ModuleList((0-2): 3 x Transformer2DModel((norm): GroupNorm(32, 1280, eps=1e-06, affine=True)(proj_in): LoRACompatibleConv(1280, 1280, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(attn1): Attention((to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)(to_k): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)(to_v): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)(to_out): ModuleList((0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(attn2): Attention((to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)(to_k): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)(to_v): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)(to_out): ModuleList((0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(ff): FeedForward((net): ModuleList((0): GEGLU((proj): LoRACompatibleLinear(in_features=1280, out_features=10240, bias=True))(1): Dropout(p=0.0, inplace=False)(2): LoRACompatibleLinear(in_features=5120, out_features=1280, bias=True)))))(proj_out): LoRACompatibleConv(1280, 1280, kernel_size=(1, 1), stride=(1, 1))))(resnets): ModuleList((0-1): 2 x ResnetBlock2D((norm1): GroupNorm(32, 2560, eps=1e-05, affine=True)(conv1): LoRACompatibleConv(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()(conv_shortcut): LoRACompatibleConv(2560, 1280, kernel_size=(1, 1), stride=(1, 1)))(2): ResnetBlock2D((norm1): GroupNorm(32, 1920, eps=1e-05, affine=True)(conv1): LoRACompatibleConv(1920, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()(conv_shortcut): LoRACompatibleConv(1920, 1280, kernel_size=(1, 1), stride=(1, 1))))(upsamplers): ModuleList((0): Upsample2D((conv): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))))(2): CrossAttnUpBlock2D((attentions): ModuleList((0-2): 3 x Transformer2DModel((norm): GroupNorm(32, 640, eps=1e-06, affine=True)(proj_in): LoRACompatibleConv(640, 640, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)(attn1): Attention((to_q): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)(to_k): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)(to_v): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)(to_out): ModuleList((0): LoRACompatibleLinear(in_features=640, out_features=640, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)(attn2): Attention((to_q): LoRACompatibleLinear(in_features=640, out_features=640, bias=False)(to_k): LoRACompatibleLinear(in_features=768, out_features=640, bias=False)(to_v): LoRACompatibleLinear(in_features=768, out_features=640, bias=False)(to_out): ModuleList((0): LoRACompatibleLinear(in_features=640, out_features=640, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)(ff): FeedForward((net): ModuleList((0): GEGLU((proj): LoRACompatibleLinear(in_features=640, out_features=5120, bias=True))(1): Dropout(p=0.0, inplace=False)(2): LoRACompatibleLinear(in_features=2560, out_features=640, bias=True)))))(proj_out): LoRACompatibleConv(640, 640, kernel_size=(1, 1), stride=(1, 1))))(resnets): ModuleList((0): ResnetBlock2D((norm1): GroupNorm(32, 1920, eps=1e-05, affine=True)(conv1): LoRACompatibleConv(1920, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=640, bias=True)(norm2): GroupNorm(32, 640, eps=1e-05, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()(conv_shortcut): LoRACompatibleConv(1920, 640, kernel_size=(1, 1), stride=(1, 1)))(1): ResnetBlock2D((norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)(conv1): LoRACompatibleConv(1280, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=640, bias=True)(norm2): GroupNorm(32, 640, eps=1e-05, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()(conv_shortcut): LoRACompatibleConv(1280, 640, kernel_size=(1, 1), stride=(1, 1)))(2): ResnetBlock2D((norm1): GroupNorm(32, 960, eps=1e-05, affine=True)(conv1): LoRACompatibleConv(960, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=640, bias=True)(norm2): GroupNorm(32, 640, eps=1e-05, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()(conv_shortcut): LoRACompatibleConv(960, 640, kernel_size=(1, 1), stride=(1, 1))))(upsamplers): ModuleList((0): Upsample2D((conv): LoRACompatibleConv(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))))(3): CrossAttnUpBlock2D((attentions): ModuleList((0-2): 3 x Transformer2DModel((norm): GroupNorm(32, 320, eps=1e-06, affine=True)(proj_in): LoRACompatibleConv(320, 320, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(attn1): Attention((to_q): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)(to_k): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)(to_v): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)(to_out): ModuleList((0): LoRACompatibleLinear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(attn2): Attention((to_q): LoRACompatibleLinear(in_features=320, out_features=320, bias=False)(to_k): LoRACompatibleLinear(in_features=768, out_features=320, bias=False)(to_v): LoRACompatibleLinear(in_features=768, out_features=320, bias=False)(to_out): ModuleList((0): LoRACompatibleLinear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(ff): FeedForward((net): ModuleList((0): GEGLU((proj): LoRACompatibleLinear(in_features=320, out_features=2560, bias=True))(1): Dropout(p=0.0, inplace=False)(2): LoRACompatibleLinear(in_features=1280, out_features=320, bias=True)))))(proj_out): LoRACompatibleConv(320, 320, kernel_size=(1, 1), stride=(1, 1))))(resnets): ModuleList((0): ResnetBlock2D((norm1): GroupNorm(32, 960, eps=1e-05, affine=True)(conv1): LoRACompatibleConv(960, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=320, bias=True)(norm2): GroupNorm(32, 320, eps=1e-05, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()(conv_shortcut): LoRACompatibleConv(960, 320, kernel_size=(1, 1), stride=(1, 1)))(1-2): 2 x ResnetBlock2D((norm1): GroupNorm(32, 640, eps=1e-05, affine=True)(conv1): LoRACompatibleConv(640, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=320, bias=True)(norm2): GroupNorm(32, 320, eps=1e-05, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU()(conv_shortcut): LoRACompatibleConv(640, 320, kernel_size=(1, 1), stride=(1, 1))))))(mid_block): UNetMidBlock2DCrossAttn((attentions): ModuleList((0): Transformer2DModel((norm): GroupNorm(32, 1280, eps=1e-06, affine=True)(proj_in): LoRACompatibleConv(1280, 1280, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(attn1): Attention((to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)(to_k): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)(to_v): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)(to_out): ModuleList((0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(attn2): Attention((to_q): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=False)(to_k): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)(to_v): LoRACompatibleLinear(in_features=768, out_features=1280, bias=False)(to_out): ModuleList((0): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(ff): FeedForward((net): ModuleList((0): GEGLU((proj): LoRACompatibleLinear(in_features=1280, out_features=10240, bias=True))(1): Dropout(p=0.0, inplace=False)(2): LoRACompatibleLinear(in_features=5120, out_features=1280, bias=True)))))(proj_out): LoRACompatibleConv(1280, 1280, kernel_size=(1, 1), stride=(1, 1))))(resnets): ModuleList((0-1): 2 x ResnetBlock2D((norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)(conv1): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(time_emb_proj): LoRACompatibleLinear(in_features=1280, out_features=1280, bias=True)(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)(dropout): Dropout(p=0.0, inplace=False)(conv2): LoRACompatibleConv(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(nonlinearity): SiLU())))(conv_norm_out): GroupNorm(32, 320, eps=1e-05, affine=True)(conv_act): SiLU()(conv_out): Conv2d(320, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)

“feature extractor block”

CLIPImageProcessor {"crop_size": {"height": 224,"width": 224},"do_center_crop": true,"do_convert_rgb": true,"do_normalize": true,"do_rescale": true,"do_resize": true,"feature_extractor_type": "CLIPFeatureExtractor","image_mean": [0.48145466,0.4578275,0.40821073],"image_processor_type": "CLIPImageProcessor","image_std": [0.26862954,0.26130258,0.27577711],"resample": 3,"rescale_factor": 0.00392156862745098,"size": {"shortest_edge": 224},"use_square_size": false
}

“tokenizer block”

CLIPTokenizer(name_or_path='/home/tiger/.cache/huggingface/hub/models--runwayml--stable-diffusion-v1-5/snapshots/1d0c4ebf6ff58a5caecab40fa1406526bca4b5b9/tokenizer', vocab_size=49408, model_max_length=77, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<|startoftext|>', 'eos_token': '<|endoftext|>', 'unk_token': '<|endoftext|>', 'pad_token': '<|endoftext|>'}, clean_up_tokenization_spaces=True),  added_tokens_decoder={49406: AddedToken("<|startoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=True),49407: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=True),
}

“safety_checker block”

StableDiffusionSafetyChecker((vision_model): CLIPVisionModel((vision_model): CLIPVisionTransformer((embeddings): CLIPVisionEmbeddings((patch_embedding): Conv2d(3, 1024, kernel_size=(14, 14), stride=(14, 14), bias=False)(position_embedding): Embedding(257, 1024))(pre_layrnorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)(encoder): CLIPEncoder((layers): ModuleList((0-23): 24 x CLIPEncoderLayer((self_attn): CLIPAttention((k_proj): Linear(in_features=1024, out_features=1024, bias=True)(v_proj): Linear(in_features=1024, out_features=1024, bias=True)(q_proj): Linear(in_features=1024, out_features=1024, bias=True)(out_proj): Linear(in_features=1024, out_features=1024, bias=True))(layer_norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)(mlp): CLIPMLP((activation_fn): QuickGELUActivation()(fc1): Linear(in_features=1024, out_features=4096, bias=True)(fc2): Linear(in_features=4096, out_features=1024, bias=True))(layer_norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True))))(post_layernorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)))(visual_projection): Linear(in_features=1024, out_features=768, bias=False)
)

“scheduler block”

PNDMScheduler {"_class_name": "PNDMScheduler","_diffusers_version": "0.22.3","beta_end": 0.012,"beta_schedule": "scaled_linear","beta_start": 0.00085,"clip_sample": false,"num_train_timesteps": 1000,"prediction_type": "epsilon","set_alpha_to_one": false,"skip_prk_steps": true,"steps_offset": 1,"timestep_spacing": "leading","trained_betas": null
}

相关文章:

diffusers库中stable Diffusion模块的解析

diffusers库中stable Diffusion模块的解析 diffusers中&#xff0c;stable Diffusion v1.5主要由以下几个部分组成 Out[3]: dict_keys([vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor])下面给出具体的结构说明。 “text_encoder block…...

智慧城市照明为城市节能降耗提供支持继电器开关钡铼S270

智慧城市照明&#xff1a;为城市节能降耗提供支持——以钡铼技术S270继电器开关为例 随着城市化进程的加速&#xff0c;城市照明系统的需求也日益增长。与此同时&#xff0c;能源消耗和环境污染问题日益严重&#xff0c;使得城市照明的节能减排成为重要议题。智慧城市照明系统…...

固高GTS800控制卡开发数控系统宏程序心得

在对固高GTS800控制卡做数控系统开发时&#xff0c;经过多年的总结与积累&#xff0c;总算是实现了一个数控系统的基本功能。 基本实现宏程序的译码与执行同时执行&#xff0c;虽然不是实时执行&#xff0c;但在充分利用插补缓存区的基础上&#xff0c;实现了相对的实时性。 …...

linux入门---线程池的模拟实现

目录标题 什么是线程池线程的封装准备工作构造函数和析构函数start函数join函数threadname函数完整代码 线程池的实现准备工作构造函数和析构函数push函数pop函数run函数完整的代码 测试代码 什么是线程池 在实现线程池之前我们先了解一下什么是线程池&#xff0c;所谓的池大家…...

jQuery HTML/CSS 参考文档

jQuery HTML/CSS 参考文档 文章目录 应用样式 示例属性方法示例 jQuery HTML/CSS 参考文档 应用样式 addClass( classes ) 方法可用于将定义好的样式表应用于所有匹配的元素上。可以通过空格分隔指定多个类。 示例 以下是一个简单示例&#xff0c;设置了para标签 <p&g…...

QT 布局管理综合实例

通过一个实例基本布局管理&#xff0c;演示QHBoxLayout类、QVBoxLayout类及QGridLayout类效果 本实例共用到四个布局管理器&#xff0c;分别是 LeftLayout、RightLayout、BottomLayout和MainLayout。 在源文件“dialog.cpp”具体代码如下&#xff1a; 运行效果&#xff1a; Se…...

使用 pubsub-js 进行消息发布订阅

npm 包地址 github 包地址 pubsub-js 是一个轻量级的 JavaScript 基于主题的消息订阅发布库 &#xff0c;压缩后小于1b。它具有使用简单、性能高效、支持多平台等优点&#xff0c;可以很好地满足各种需求。 功能特点&#xff1a; 无依赖同步解耦ES3 兼容。pubsub-js 能够在…...

TA Shader基础

渲染管线 概念&#xff1a;GPU绘制物体的时候&#xff0c;标准的&#xff0c;流水线一样的操作 游戏引擎如何绘制物体&#xff1a;CPU提供绘制数据&#xff08;顶点数据&#xff0c;纹理贴图等&#xff09;给GPU&#xff0c;配置渲染管线&#xff08;装载Shader代码到GPU&…...

VScode + opencv(cmake编译) + c++ + win配置教程

1、下载opencv 2、下载CMake 3、下载MinGW 放到一个文件夹中 并解压另外两个文件 4、cmake编译opencv 新建文件夹mingw-build 双击cmake-gui 程序会开始自动生成Makefiles等文件配置&#xff0c;需要耐心等待一段时间。 简单总结下&#xff1a;finish->configuring …...

Vue中的常用指令v-html / v-show / v-if / v-else / v-on / v-bind / v-for / v-model

前言 持续学习总结输出中&#xff0c;Vue中的常用指令v-html / v-show / v-if / v-else / v-on / v-bind / v-for / v-model 概念&#xff1a;指令&#xff08;Directives&#xff09;是Vue提供的带有 v- 前缀 的特殊标签属性。可以提高操作 DOM 的效率。 vue 中的指令按照不…...

ChatGPT 提问技巧

ChatGPT是由 OpenAI 训练的⼀款⼤型语⾔模型&#xff0c;能够和你进⾏任何领域的对话。 它能够⽣成类似于⼈类写作的⽂本。您只需要给出提示或提出问题&#xff0c;它就可以⽣成你想要的东⻄。 在此⻚⾯中&#xff0c;您将找到可与 ChatGPT ⼀起使⽤的各种提示。 只需按照下…...

2023-11-09 LeetCode每日一题(逃离火灾)

2023-11-09每日一题 一、题目编号 2258. 逃离火灾二、题目链接 点击跳转到题目位置 三、题目描述 给你一个下标从 0 开始大小为 m x n 的二维整数数组 grid &#xff0c;它表示一个网格图。每个格子为下面 3 个值之一&#xff1a; 0 表示草地。1 表示着火的格子。2 表示一…...

阿里云-maven私服idea访问私服与组件上传

1.进入aliyun制品仓库 2. 点击 生产库-release进入 根据以上步骤修改本地 m2/setting.xml文件 3.pom.xml文件 点击设置获取url 4. idea发布组件...

Ubuntu上的TFTP服务软件

2023年11月11日&#xff0c;周六下午 目录 tftpd-hpa atftpd 配置和启动 tftpd-hpa 这是一个TFTP服务器软件包&#xff0c;提供了一个简单的TFTP服务器。 你可以使用以下命令安装它&#xff1a; sudo apt-get install tftpd-hpaatftpd 这是另一个常用的TFTP服务器软件包…...

jedis、lettuce与redis交互分析

概念梳理&#xff1a; redis是缓存服务器&#xff0c;jedis、lettuce都是Java语言下的redis客户端&#xff0c;用于与redis服务器进行交互。springboot项目中一般使用的是spring data redis&#xff0c;spring data redis依赖与jedis或lettuce&#xff0c;可以进行配置&#x…...

C++算法:矩阵中的最长递增路径

涉及知识点 拓扑排序 题目 给定一个 m x n 整数矩阵 matrix &#xff0c;找出其中 最长递增路径 的长度。 对于每个单元格&#xff0c;你可以往上&#xff0c;下&#xff0c;左&#xff0c;右四个方向移动。 你 不能 在 对角线 方向上移动或移动到 边界外&#xff08;即不允…...

OpenWRT配置SFTP远程文件传输,让数据分享更安全

文章目录 前言 1. openssh-sftp-server 安装2. 安装cpolar工具3.配置SFTP远程访问4.固定远程连接地址 前言 本次教程我们将在OpenWRT上安装SFTP服务&#xff0c;并结合cpolar内网穿透&#xff0c;创建安全隧道映射22端口&#xff0c;实现在公网环境下远程OpenWRT SFTP&#xf…...

已解决:rm: 无法删除“/opt/module/zookeeper-3.4.10/zkData/zookeeper_server.pid“: 权限不够

解决&#xff1a; ZooKeeper JMX enabled by default Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg Stopping zookeeper ... /opt/module/zookeeper-3.4.10/bin/zkServer.sh: 第 182 行:kill: (4149) - 不允许的操作 rm: 无法删除"/opt/module/zooke…...

Flink(四)【DataStream API - Source算子】

前言 今天开始学习 DataStream 的 API &#xff0c;这一块是 Flink 的核心部分&#xff0c;我们不去学习 DataSet 的 API 了&#xff0c;因为从 Flink 12 开始已经实现了流批一体&#xff0c; DataSet 已然是被抛弃了。忘记提了&#xff0c;从这里开始&#xff0c;我开始换用 F…...

GIS入门,xyz地图瓦片是什么,xyz数据格式详解,如何发布离线XYZ瓦片到nginx或者tomcat中

XYZ介绍 XYZ瓦片是一种在线地图数据格式,由goole公司开发。 与其他瓦片地图类似,XYZ瓦片将地图数据分解为一系列小的图像块,以提高地图显示效率和性能。 XYZ瓦片提供了一种开放的地图平台,使开发者可以轻松地将地图集成到自己的应用程序中。同时,它还提供了高分辨率图像和…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...