Python实战 | 使用 Python 和 TensorFlow 构建卷积神经网络(CNN)进行人脸识别
专栏集锦,大佬们可以收藏以备不时之需
Spring Cloud实战专栏:https://blog.csdn.net/superdangbo/category_9270827.html
Python 实战专栏:https://blog.csdn.net/superdangbo/category_9271194.html
Logback 详解专栏:https://blog.csdn.net/superdangbo/category_9271502.html
tensorflow专栏:https://blog.csdn.net/superdangbo/category_8691332.html
Redis专栏:https://blog.csdn.net/superdangbo/category_9950790.html
Spring Cloud实战:
Spring Cloud 实战 | 解密Feign底层原理,包含实战源码
Spring Cloud 实战 | 解密负载均衡Ribbon底层原理,包含实战源码
1024程序员节特辑文章:
1024程序员狂欢节特辑 | ELK+ 协同过滤算法构建个性化推荐引擎,智能实现“千人千面”
1024程序员节特辑 | 解密Spring Cloud Hystrix熔断提高系统的可用性和容错能力
1024程序员节特辑 | ELK+ 用户画像构建个性化推荐引擎,智能实现“千人千面”
1024程序员节特辑 | OKR VS KPI谁更合适?
1024程序员节特辑 | Spring Boot实战 之 MongoDB分片或复制集操作
Spring实战系列文章:
Spring实战 | Spring AOP核心秘笈之葵花宝典
Spring实战 | Spring IOC不能说的秘密?
国庆中秋特辑系列文章:
国庆中秋特辑(八)Spring Boot项目如何使用JPA
国庆中秋特辑(七)Java软件工程师常见20道编程面试题
国庆中秋特辑(六)大学生常见30道宝藏编程面试题
国庆中秋特辑(五)MySQL如何性能调优?下篇
国庆中秋特辑(四)MySQL如何性能调优?上篇
国庆中秋特辑(三)使用生成对抗网络(GAN)生成具有节日氛围的画作,深度学习框架 TensorFlow 和 Keras 来实现
国庆中秋特辑(二)浪漫祝福方式 使用生成对抗网络(GAN)生成具有节日氛围的画作
国庆中秋特辑(一)浪漫祝福方式 用循环神经网络(RNN)或长短时记忆网络(LSTM)生成祝福诗词

目录
- 一、Python 卷积神经网络(CNN)进行图像识别基本步骤
- 二、实战:使用 Python 和 TensorFlow 构建卷积神经网络(CNN)进行人脸识别的完整代码示例
一、Python 卷积神经网络(CNN)进行图像识别基本步骤
Python 卷积神经网络(CNN)在图像识别领域具有广泛的应用。通过使用卷积神经网络,我们可以让计算机从图像中学习特征,从而实现对图像的分类、识别和分析等任务。以下是使用 Python 卷积神经网络进行图像识别的基本步骤:
- 导入所需库:首先,我们需要导入一些 Python 库,如 TensorFlow、Keras 等,以便搭建和训练神经网络。
import tensorflow as tf
from tensorflow.keras import layers, models
- 数据准备:加载图像数据,通常使用数据增强和预处理方法来扩充数据集。这可以包括缩放、裁剪、翻转等操作。
# 假设我们有一个名为'data'的图像数据集
import numpy as np
data = np.load('data.npz')
images = data['images']
labels = data['labels']
- 构建卷积神经网络模型:搭建卷积神经网络,包括卷积层、池化层和全连接层。卷积层用于提取图像特征,池化层用于降低特征图的维度,全连接层用于最终的分类。
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
- 编译模型:配置优化器、损失函数和评估指标。
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
- 训练模型:将数据集分为训练集和验证集,使用训练集进行模型训练。
model.fit(images_train, labels_train, epochs=10, validation_data=(images_test, labels_test))
- 评估模型:使用验证集评估模型性能。
test_loss, test_acc = model.evaluate(images_test, labels_test)
print("Test accuracy:", test_acc)
- 预测:使用训练好的模型对新图像进行分类预测。
predictions = model.predict(new_image)
predicted_class = np.argmax(predictions)
print("Predicted class:", predicted_class)
通过以上步骤,我们可以使用 Python 卷积神经网络(CNN)对图像进行识别。需要注意的是,这里仅提供一个简单的示例,实际应用中可能需要根据任务需求调整网络结构、参数和训练策略。
二、实战:使用 Python 和 TensorFlow 构建卷积神经网络(CNN)进行人脸识别的完整代码示例
以下是一个使用 Python 和 TensorFlow 构建卷积神经网络(CNN)进行人脸识别的完整代码示例。这个例子使用了预训练的 VGG16 模型,你可以根据需要修改网络结构和相关参数。
请注意,运行此代码需要安装 TensorFlow 和 Keras 库。如果你尚未安装,可以使用以下命令进行安装:
pip install tensorflow
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications.vgg16 import VGG16
# 加载预训练的 VGG16 模型
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
# 创建自定义模型
x = base_model.output
x = Flatten()(x)
x = Dense(1024, activation='relu')(x)
x = Dropout(0.5)(x)
predictions = Dense(1000, activation='softmax')(x)
# 创建模型
model = Model(inputs=base_model.input, outputs=predictions)
# 为了在 CPU 上运行,将 GPU 设置为 False
model.predict(np.random.rand(1, 224, 224, 3), verbose=0, steps_per_epoch=1)
# 加载人脸数据集
train_datasets = 'path/to/train/data'
test_datasets = 'path/to/test/data'
# 数据预处理
train_datagen = ImageDataGenerator( rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
test_datagen = ImageDataGenerator(rescale=1./255)
# 加载和预处理训练数据
train_generator = train_datagen.flow_from_directory( train_datasets, target_size=(224, 224), batch_size=32, class_mode='softmax'
)
# 加载和预处理测试数据
validation_generator = test_datagen.flow_from_directory( test_datasets, target_size=(224, 224), batch_size=32, class_mode='softmax'
)
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit( train_generator, epochs=10, validation_data=validation_generator
)
# 使用模型进行预测
model.evaluate(validation_generator)
请注意,你需要将 train_datasets 和 test_datasets 替换为人脸数据的路径。此代码示例假设你使用的是一个与人脸图像大小相同的数据集。
这个例子使用了一个预训练的 VGG16 模型,并将其剩余层作为基础层。然后,我们添加了自己的全连接层进行人脸识别。根据你的人脸数据集和任务需求,你可能需要调整网络结构、训练参数和数据预处理方法。
在运行此代码之前,请确保你已经准备好了一个包含人脸图像的数据集。你可以使用人脸检测算法(如 dlib 库)来提取人脸区域,然后将人脸图像裁剪到固定大小(如 224x224 像素)。
相关文章:
Python实战 | 使用 Python 和 TensorFlow 构建卷积神经网络(CNN)进行人脸识别
专栏集锦,大佬们可以收藏以备不时之需 Spring Cloud实战专栏:https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏:https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏:https:/…...
JLink edu mini 10Pin接口定义
注意:SWD接口在阵脚2,4;而20Pin的SWD接口在阵脚7,9 参考:1 官网资料; 2 【润石RS0104YQ Demo开发板测试分享】J-Link EDU Mini调试5V系统_国产运算放大器_模拟开关_线性稳压器_电平转换器_小逻辑_比较器…...
compile: version “go1.19“ does not match go tool version “go1.18.1“
** 1 安装了新版本的go后 为什么go version 还是旧版本? ** 如果你已经按照上述步骤安装了新版本的 Go,但 go version 命令仍然显示旧版本,可能是因为你的环境变量设置不正确或未正确生效。你可以尝试以下方法来解决问题: 重新…...
spring boot security 自定义AuthenticationProvider
spring boot security 自定义AuthenticationProvider 基于 spring boot 3.x 场景实现 手机验证码登陆 实现 CaptureCodeAuthenticationFilter public class CaptureCodeAuthenticationFilter extends AbstractAuthenticationProcessingFilter {private static final Strin…...
某电力设计公司绩效考核优化项目成功案例纪实
——引入角色定位考核法,建立多维度评价体系,支持业务转型后的客观评价 【客户行业】电力行业 【问题类型】绩效考核 【客户背景及现状分析】 某电力设计公司成立于2000年左右,是一家从事输变电工程勘察、设计、咨询的专业公司,…...
力扣371周赛
力扣第371场周赛 找出强数对的最大异或值 I 枚举 class Solution { public:int maximumStrongPairXor(vector<int>& a) {int n a.size() , res 0;for(int i 0 ; i < n ; i ){for(int j 0 ; j < n ; j ){if(abs(a[i]-a[j])<min(a[i],a[j])){int c (a…...
Python之字符串、正则表达式练习
目录 1、输出随机字符串2、货币的转换(字符串 crr107)3、凯撒加密(book 实验 19)4、字符替换5、检测字母或数字6、纠正字母7、输出英文中所有长度为3个字母的单词 1、输出随机字符串 编写程序,输出由英文字母大小写或…...
Transmit :macOS 好用的 Ftp/SFtp 工具
Transmit 是一种功能强大的 FTP/SFTP/WebDAV 客户端软件,是一个 Mac OS X 平台上设计的文件传输软件。它由 Panic(一家以软件工具为主的公司)开发和维护,是一款非常受欢迎且易于使用的软件,而且被广泛认为是 Mac OS X …...
【Github】git clone命令下载文件中途停止
方法一: 使用git clone命令下载github上的源代码时,有时文件下载到一定百分比时就停止不动, 这是因为我们所下载的文件很大,超过了git预先分配的Postbuffer容量,所以一直卡在那里。可以使用以下命令查看当前Postbuffe…...
Clickhouse学习笔记(10)—— 查询优化
单表查询 Prewhere 替代 where prewhere与where相比,在过滤数据的时候会首先读取指定的列数据,来判断数据过滤,等待数据过滤之后再读取 select 声明的列字段来补全其余属性 简单来说就是先过滤再查询,而where过滤是先查询出对应…...
[量化投资-学习笔记012]Python+TDengine从零开始搭建量化分析平台-策略回测
上一章节《MACD金死叉策略回测》中,对平安银行这只股票,按照金死叉策略进行了回测。 但通常我们的股票池中有许多股票,每完成一个交易策略都需要对整个股票池进行回测。 下面使用简单的轮询,对整个股票池进行回测。 # 计算单只…...
MySQL 查看 event 执行记录
文章目录 1. 查看 EVENT 执行记录2. 示例3. 结论 MySQL 是一款流行的关系型数据库管理系统,它提供了许多功能来帮助用户管理和操作数据库。其中之一就是 EVENT事件,它允许用户在特定的时间间隔内自动执行指定的操作,类似于计划任务。 在使用 …...
开发知识点-Vue-Electron
Electron ElectronVue打包.exe桌面程序 ElectronVue打包.exe桌面程序 为了不报错 卸载以前的脚手架 npm uninstall -g vue-cli安装最新版脚手架 cnpm install -g vue/cli创建一个 vue 随便起个名 vue create electron-vue-example (随便起个名字electron-vue-example)进入 创建…...
【线性代数】反求矩阵A
...
MyBatis 中的 foreach 的用法
本文将介绍 MyBatis 中的 <foreach> 标签的灵活应用,并结合财经领域的数据处理场景,阐述其在财经系统开发中的重要性和应用价值。 MyBatis中的<foreach>标签简介 MyBatis 是一个优秀的持久层框架,它简化了数据库操作的流程&…...
交叉编译 mysql-connector-c
下载 mysql-connector-c $ wget https://downloads.mysql.com/archives/get/p/19/file/mysql-connector-c-6.1.5-src.tar.gz 注意:mysql-connector 的页面有很多版本,在测试过程中发现很多默认编译有问题,其中上面的 6.1.5 的版本呢是经过测…...
企业如何选择正确的存储服务器租用?
数据时代的发展,让越来越多的企业选择使用存储服务器来存储数据,今天小编就带大家了解一下企业应该怎么正确的选择存储服务器吧,要关注哪些方面的问题呢? 第一点肯定是看自己的需求,不论是选择什么服务器最重要的一点就…...
45.跳跃游戏II
45.跳跃游戏II 题目描述:给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。 每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i j] 处: 0 < j < nums[i]i …...
css style、css color 转 UIColor
你能看过来,就说明这个问题很好玩!IT开发是一个兴趣,更是一个挑战!兴趣使你工作有热情。挑战使让你工作充满刺激拉满的状态!我们日复一日年复一年的去撸代码,那些普普通通的功能代码,已经厌倦了…...
C++(20):typename声明类的子类型的简化
C++:typename声明类的子类型_风静如云的博客-CSDN博客 介绍了某些时候需要使用typename来告诉编译器,这是一个类的类型。 C++20简化了对typename的需求,对于明显是类型的地方,可以不再使用typename进行说明: #include <iostream> #include <string>using na…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
