keras转onnx,TensorFlow转tf.keras.models.load_model,onnx精度转换
参考:
https://blog.csdn.net/Deaohst/article/details/126864267
转onnx
别直接转onnx。
先转PB:
import tensorflow as tfmodel_path = './models/model.h5' # 模型文件
model = tf.keras.models.load_model(model_path)
model.save('tfmodel', save_format='tf')
再转onnx:
python -m tf2onnx.convert --saved-model ./tfmodel/ --output ./models/model.onnx --opset 12 --verbose
转化成功:

将原结果和onnx推理结果比对:
原结果:
{‘drawings’: 0.00619311910122633, ‘hentai’: 0.00011550176714081317, ‘neutral’: 0.992009162902832, ‘porn’: 0.0008918801322579384, ‘sexy’: 0.0007902580546215177}}
onnx推理代码和推理结果:
import cv2
import numpy as np
import onnxruntimeIMAGE_DIM = 299 # required/default image dimensionalitydef load_single_image(image_path, image_size, verbose=True):try:if verbose:print(image_path, "size:", image_size)# Load image using OpenCVimage = cv2.imread(image_path)image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert to RGBimage = cv2.resize(image, (image_size, image_size))# Preprocess the imageimage = image.astype(np.float32) / 255.0return np.expand_dims(image, axis=0), image_pathexcept Exception as ex:print("Image Load Failure: ", image_path, ex)return None, None# Load ONNX model
onnx_model_path = './models/model.onnx'
ort_session = onnxruntime.InferenceSession(onnx_model_path)# Example usage:
image_path_to_load = "images/20230903000800.jpg"
loaded_image, loaded_image_path = load_single_image(image_path_to_load, IMAGE_DIM)if loaded_image is not None:# Perform inferenceinput_name = ort_session.get_inputs()[0].nameoutput_name = ort_session.get_outputs()[0].nameinput_data = loaded_image# Run the ONNX modelresult = ort_session.run([output_name], {input_name: input_data})print(result[0].tolist())
images/20230903000800.jpg size: 299
[[0.004163397941738367, 0.00018479839491192251, 0.9918997287750244, 0.0020591376814991236, 0.0016930525889620185]]
结果不是很吻合,但也大差不差了。
转fp16 onnx
安装:
pip install onnxmltools
执行脚本:
import onnxmltools
# 加载float16_converter转换器
from onnxmltools.utils.float16_converter import convert_float_to_float16
# 使用onnxmltools.load_model()函数来加载现有的onnx模型
# 但是请确保这个模型是一个fp32的原始模型
onnx_model = onnxmltools.load_model('./models/model.onnx')
# 使用convert_float_to_float16()函数将fp32模型转换成半精度fp16
onnx_model_fp16 = convert_float_to_float16(onnx_model)
# 使用onnx.utils.save_model()函数来保存,
onnxmltools.utils.save_model(onnx_model_fp16, './models/model_fp16.onnx')
推理结果:
images/20230903000800.jpg size: 299
[[0.004119873046875, 0.00018489360809326172, 0.99169921875, 0.002071380615234375, 0.001697540283203125]]
相关文章:
keras转onnx,TensorFlow转tf.keras.models.load_model,onnx精度转换
参考: https://blog.csdn.net/Deaohst/article/details/126864267 转onnx 别直接转onnx。 先转PB: import tensorflow as tfmodel_path ./models/model.h5 # 模型文件 model tf.keras.models.load_model(model_path) model.sa…...
高可用架构设计
1. 引言 软件系统有三个追求:高性能、高并发、高可用,俗称三高。三者既有区别也有联系,门门道道很多,本篇讨论高可用 高可用技术的重要性在于保证系统的连续可用性,提高系统的稳定性和可靠性。它可以应对高并发和大规…...
qemu 之 uboot、linux 启动
目录 编译uboot、kernel 编译启动从 uboot 中引导启动 linux注参考 本文主要说明 arm64 在 qemu 上的相关启动。 编译 使用的是 qemu-8.1.1 版本,编译命令如下: ../configure --cc/usr/local/bin/gcc --prefix/home/XXX/qemu_out --enable-virtfs --enable-slir…...
C语言--每日五道选择题--Day8
第一题 1、下列程序的输出是( ) #include<stdio.h> int main() {int a[12] {1,2,3,4,5,6,7,8,9,10,11,12};int *p[4];int i;for(i0;i<4;i){p[i]&a[i*3];}printf("%d\n",p[3][2]);return 0; } A: 上述程序有错误 B: 6…...
Outlook如何删除邮箱账户
Outlook如何删除邮箱账户 说明: 最近有用户询问到“我的Outlook登陆了很多个邮箱账号,不知道怎么退出”接下来将具体操作步骤加以说明 操作指引: 1、首先打开Outlook该软件,然后点击“文件” 2、点击账户设置下拉菜单 3、在下拉…...
ultrascale+mpsoc系列的ZYNQ中DDR4参数设置说明
ultrascalempsoc系列的ZYNQ中DDR4参数设置说明 标题1 概述标题2 讲述平台标题3 ZYNQ的DDR设置界面参数标题4 DDR参数界面说明如下 标题1 概述 本文用于讲诉ultrascalempsoc系列中的ZYNQ的DDR4的参数设置与实际硬件中的DDR选型之间的关系,为FPGA设计人员探明道路。 …...
maven-六类属性
Maven的六类属性_maven内置属性-CSDN博客 系统变量指的是java系统的变量,环境变量指的系统变量和用户变量 java系统仅针对java程序,环境变量是全局的。两者都可以传进java进程。 参考 01.java环境变量(env)和系统属性…...
微服务概念
微服务 微服务是什么 In short, the microservice architectural style [1] is an approach to developing a single application as a suite of small services, each running in its own process and communicating with lightweight mechanisms, often an HTTP resource A…...
响应式摄影科技传媒网站模板源码带后台
模板信息: 模板编号:540 模板编码:UTF8 模板颜色:黑白 模板分类:摄像、婚庆、家政、保洁 适合行业: 模板介绍: 本模板自带eyoucms内核,无需再下载eyou系统,原创设计、手…...
探索C#事件(Event)的强大应用
摘要 在现代软件开发中,对象之间的通信和交互是一个常见而重要的问题。为了解决这个问题,C#作为一种面向对象的编程语言提供了一种强大的特性:事件(Event)。事件可以帮助开发人员实现对象间的松耦合,提高代…...
学习c#的第四天
目录 C# 变量 C# 中的变量定义与初始化 接受来自用户的值 C# 中的 Lvalues 和 Rvalues 不同类型变量进行运算 静态变量 局部变量 C# 常量 整数常量 浮点常量 字符常量 字符串常量 定义常量 扩展知识 Convert.ToDouble 与 Double.Parse 的区别 静态常量和动态常…...
解析JSON字符串:属性值为null的时候不被序列化
如果希望属性值为null及不序列化,只序列化不为null的值。 1、测试代码 配置代码: mapper.setSerializationInclusion(JsonInclude.Include.NON_NULL); 或者通过注解JsonInclude(JsonInclude.Include.NON_NULL) //常见问题2:属性为null&a…...
短视频短剧小程序系统:用技术丰富你的碎片时间
在当今快节奏的生活中,人们的休闲时间变得越来越碎片化。短视频短剧小程序系统正是利用这一现象,通过技术手段为人们提供了丰富多样的娱乐内容,让碎片时间变得更加充实。 一、短视频短剧小程序系统的技术特点 高效加载与流畅播放࿱…...
服务器数据恢复—磁盘出现坏道掉线导致raid5阵列崩溃的数据恢复案例
服务器数据恢复环境: 某品牌服务器中有一组16块SAS接口硬盘组建的raid5磁盘阵列。 服务器故障&检测: 服务器raid5阵列中有2块硬盘掉线,上层服务器应用崩溃,导致服务器数据丢失。丢失的数据主要是4个1.5TB大小的卷中的数据&am…...
Android R.fraction
来源 我是在看Android10原生代码,绘制状态栏蓝牙电量相关类中第一次看到R.fraction的,如类BatteryMeterDrawable <fraction name"battery_button_height_fraction">10%</fraction> mButtonHeightFraction context.getResources(…...
C语言精华题目锦集1
第一题 test.c文件中包括如下语句,文件中定义的四个变量中,是指针类型的是()【多选】 #define INT_PTR int* typedef int* intptr; INT_PRT a,b; int_ptr c,d;A:a B:b C:c D:d #define是宏定义,此时在程序中IN…...
头歌答案Python——JSON基础
目录 编辑 Python——JSON基础 第1关:JSON篇:JSON基础知识 任务描述 第2关:JSON篇:使用json库 任务描述 Python——XPath基础 第1关:XPath 路径表达式 任务描述 第2关:XPath 轴定位 任务描述…...
TDengine 与煤科院五大系统实现兼容性互认,助力煤矿智能化安全体系搭建
近日,涛思数据与煤炭科学技术研究院(以下简称煤科院)已完成数个产品兼容互认证工作,经双方共同严格测试,涛思数据旗下物联网、工业大数据平台 TDengine V3.X 与煤炭科学技术研究院旗下煤矿复合灾害监测监控预警系统、煤…...
231030期就业班开班咯!我在前方护航,让你稳稳入职
就业哪家强?还得看优橙! 11月9日,231030期就业班的小伙伴结束了为期8天的基础班学习,正式进入了就业班。优橙教育也为新一批就业班的同学举办了开班典礼。 典礼环节中不仅有多彩的抽奖活动,也有丰富的超值礼品,旨在鼓…...
小白学安全-漏洞编号的理解 CVE/CAN/BUGTRAQ/CNCVE/CNVD/CNNVD
1、以CVE开头,如CVE-1999-1046这样的 CVE的英文全称是“Common Vulnerabilities&Exposures”公共漏洞和暴露。CVE就好像是一个字典表,为广泛认同的信息安全漏洞或者已经暴露出来的弱点给出一个公共的名称。使用一个共同的名字,能够帮助用…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...
【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
Axure零基础跟我学:展开与收回
亲爱的小伙伴,如有帮助请订阅专栏!跟着老师每课一练,系统学习Axure交互设计课程! Axure产品经理精品视频课https://edu.csdn.net/course/detail/40420 课程主题:Axure菜单展开与收回 课程视频:...
