图像二值化阈值调整——Triangle算法,Maxentropy方法
一. Triangle方法
算法描述:三角法求分割阈值最早见于Zack的论文《Automatic measurement of sister chromatid exchange frequency》主要是用于染色体的研究,该方法是使用直方图数据,基于纯几何方法来寻找最佳阈值,它的成立条件是假设直方图最大波峰在靠近最亮的一侧,然后通过三角形求得最大直线距离,根据最大直线距离对应的直方图灰度等级即为分割阈值,图示如下:

三角几何化的过程。首先找到直方图中灰度值最高的一点并判别亮暗,然后找到最左边点,两点连接一条直线,求直方图上离直线最远的点,设置该点的灰度值为阈值。
有时候最大波峰对应位置不在直方图最亮一侧,而在暗的一侧,这样就需要翻转直方图,翻转之后求得值,用255减去即得到为阈值T。扩展情况的直方图表示如下:

算法特点:适用于单峰。这点和OTSU算法有很大区别,OTSU适用于双峰。
cv2中有三角分割的算法,直接使用即可。
import cv2
import matplotlib.pylab as pltdef main():img = cv2.imread('6.jpg', 0)ret, thresh1 = cv2.threshold(img, 0, 255, cv2.THRESH_TRIANGLE)print(ret) # 结果是151.0titles = ['Original Image', 'After Binarization']images = [img, thresh1]for i in range(2):plt.subplot(1, 2, i + 1)plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([])plt.yticks([])plt.show()main()

二. Maxentropy方法
最大熵阈值分割法和OTSU算法类似,假设将图像分为背景和前景两个部分。熵代表信息量,图像信息量越大,熵就越大,最大熵算法就是找出一个最佳阈值使得背景与前景两个部分熵之和最大。
给定一个大小为M*N的图像,直方图中所有矩形框所代表的数值之和,即为图像中的像素数量,设像素值i的像素在图中有个,即:
相对应的归一化直方图表示为:
其中0<=i<K。通常被解释为一个随机过程的概率分布或概率密度函数,表示的是图像中像素灰度值为i所出现的概率。i的累积概率值为1,即概率分布p必须满足以下关系:
与累积概率所对应的累积直方图H是一个离散的分布函数P()(通常也称为累积分布函数或cdf),P(i)表示像素值小于等于i的概率:
在图像处理中,灰度图的熵定义如下:
因为,所以
。
利用图像熵为准则进行图像分割有一定历史了,学者们提出了许多以图像熵为基础进行图像分割的方法。以下介绍一种由Kapuret al提出来,现在仍然使用较广的一种图像熵分割方法。
给定一个特定的阈值q(0<=q<K-1),对于该阈值所分割的两个图像区域C0,C1,这两部分的熵可写为:
其中:,
,
。
图像总熵为:。现在就是要遍历q(0<=q<K-1),使得Hq最大。
为了计算方便,对H(0)和H(1)的表达式进行优化:
得到
同理
其中,
。
import cv2
import matplotlib.pylab as plt
import numpy as np
import mathdef calcGrayHist(image):rows, cols = image.shape[:2]grayHist = np.zeros([256], np.uint64)for row in range(rows):for col in range(cols):grayHist[image[row][col]] += 1return grayHistdef thresh_entropy(image):rows, cols = image.shape# 求灰度直方图grayHist = calcGrayHist(image)# 归一化灰度直方图,即概率直方图normGrayHist = grayHist / float(rows*cols) # 就是上面讲的p(i)# 1.计算累加直方图zeroCumuMoment = np.zeros([256], np.float32) # 就是上面讲的P(i)for i in range(256):if i == 0:zeroCumuMoment[i] = normGrayHist[i]else:zeroCumuMoment[i] = zeroCumuMoment[i-1] + normGrayHist[i]# 2.计算各个灰度级的熵entropy = np.zeros([256], np.float32) # 就是上面讲的S_0(q)for i in range(256):if i == 0:if normGrayHist[i] == 0: # 0log2_0是0,但是对数在0处没有定义entropy[i] = 0else:entropy[i] = -normGrayHist[i] * math.log2(normGrayHist[i])else:if normGrayHist[i] == 0:entropy[i] = entropy[i-1] # 0log2_0是0,但是对数在0处没有定义else:entropy[i] = entropy[i-1] - normGrayHist[i] * math.log2(normGrayHist[i])# 3.找阈值fT = np.zeros([256], np.float32)ft1, ft2 = 0.0, 0.0totalEntropy = entropy[255]for i in range(255):# 找最大值ft1 = entropy[i] / zeroCumuMoment[i] + math.log2(zeroCumuMoment[i])ft2 = (entropy[255] - entropy[i]) / (1 - zeroCumuMoment[i]) + math.log2(1 - zeroCumuMoment[i])fT[i] = ft1 + ft2# 找最大值的索引,作为得到的阈值print(fT)threshLoc = np.where(fT == np.max(fT))thresh = threshLoc[0][0]# 阈值处理threshold = np.copy(image)threshold[threshold>thresh] = 255threshold[threshold<=thresh] = 0return thresh, thresholddef main():img = cv2.imread("6.jpg", 0)thresh, threshImg = thresh_entropy(img)print(thresh) # 结果是104.0titles = ['Original Image', 'After Binarization']images = [img, threshImg]for i in range(2):plt.subplot(1, 2, i + 1)plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([])plt.yticks([])plt.show()main()

相关文章:
图像二值化阈值调整——Triangle算法,Maxentropy方法
一. Triangle方法 算法描述:三角法求分割阈值最早见于Zack的论文《Automatic measurement of sister chromatid exchange frequency》主要是用于染色体的研究,该方法是使用直方图数据,基于纯几何方法来寻找最佳阈值,它的成立条件…...
监控视频片段合并完整视频|FFmpeg将多个视频片段拼接完整视频|PHP自动批量拼接合并视频
关于环境配置ffmpeg安装使用的看之前文章 哔哩哔哩缓存转码|FFmpeg将m4s文件转为mp4|PHP自动批量转码B站视频 <?php date_default_timezone_set("PRC"); header("Content-type: text/html; charsetutf-8"); set_time_limit(0);// 遍历获取文件 functi…...
client-go controller-runtime kubebuilder
背景 这半年一直做k8s相关的工作,一直接触client-go controller-runtime kubebuilder,但是很少有文章将这三个的区别说明白,直接用框架是简单,但是出了问题就是黑盒,这不符合我的理念,所以这篇文章从头说起…...
【vue 如何解决响应式丢失】
响应式丢失原因 在 Vue 中,响应式丢失通常是由于以下原因导致的: 1. 使用非响应式对象或属性:在 Vue 中,只有使用 Vue 实例的 data 对象中的属性或使用 Vue.set() 方法添加的属性才是响应式的。如果使用普通对象或属性ÿ…...
Selenium alert 弹窗处理!
页面弹窗有 3 种类型: alert(警告信息)confirm(确认信息)prompt(提示输入) 对于页面出现的 alert 弹窗,Selenium 提供如下方法: 序号方法/属性描述1accept()接受2dismis…...
有关自动化的脚本思考 python 按键 javascript
start 说来其实挺巧的,去年年中的时候,有一个同组的同事,由于工作流程需要,经常会打开某一网页,填写某些信息,然后上传特定的代码。 他有一次和我闲聊,他吐槽说,他每天的时间会被这…...
CKA认证模块②-K8S企业运维和落地实战-2
CKA认证模块②-K8S企业运维和落地实战-2 K8S常见的存储方案及具体应用场景分析 k8s存储-empty emptyDir类型的Volume是在Pod分配到Node上时被创建,Kubernetes会在Node上自动分配一个目录,因此无需指定宿主机Node上对应的目录文件。 这个目录的初始内容…...
SpectralDiff论文阅读笔记
高光谱图像分类是遥感领域的一个重要问题,在地球科学中有着广泛的应用。近年来,人们提出了大量基于深度学习的HSI分类方法。然而,现有方法处理高维、高冗余和复杂数据的能力有限,这使得捕获数据的光谱空间分布和样本之间的关系具有…...
selenium基本使用、无头浏览器(chrome、FireFox)、搜索标签
selenium基本使用 这个模块:既能发请求,又能解析,还能执行js selenium最初是一个自动化测试工具,而爬虫中使用它主要是为了解决requests无法直接执行 JavaScript代码的问题 selenium 会做web方向的自动化测试appnium 会做 app方向的自动化…...
Html 引入element UI + vue3 报错Failed to resolve component: el-button
问题:Html 引入element UI vue3 ,el-button效果不出来 <!DOCTYPE html> <html> <head><meta charset"UTF-8"><!-- import Vue before Element --> <!-- <script src"https://unpkg.com/vue2/dist…...
sen2cor安装
Sen2Cor工具安装教程-百度经验 (baidu.com)...
通付盾Web3专题 | SharkTeam:Web3安全实践与创新
在Web3领域,安全漏洞、黑客攻击已愈发成为用户和投资者重点关注的领域。如何保障加密资产的安全,Web3黑暗森林中又有哪些新的攻击模式产生,SharkTeam将从一线进行分享和讨论。 我们先来看一下2023年1月到8月的安全事件数量和损失的数据统计。…...
ARM Linux 基础学习 / Ubuntu 下的包管理 / apt工具
编辑整理 by Staok。 注:在 Github 上的原版文章日后可能会更新,在其它位置发的不会跟进。文章的 Gitee 仓库地址,Gitee 访问更流畅。 Ubuntu 下的包管理 / apt工具 包管理系统的功能和优点大致相同,但打包格式和工具会因平台&a…...
springcloudalibaba入门详细使用教程
目录标题 一、简介二、SpringCloud Alibaba核心组件2-1、Nacos (配置中心与服务注册与发现)2-2、Sentinel (分布式流控)2-3、RocketMQ (消息队列)/RabbitMq/kafka2-4、Seata (分布式事务)2-5、Dubbo (RPC) 三、为什么大家看好 Spring Cloud Alibaba3-1、阿里巴巴强大的技术输出…...
C# DirectoryInfo类的用法
在C#中,DirectoryInfo类是System.IO命名空间中的一个类,用于操作文件夹(目录)。通过DirectoryInfo类,我们可以方便地创建、删除、移动和枚举文件夹。本文将详细介绍DirectoryInfo类的常用方法和属性,并提供…...
IDEA常用快捷键大全(详解)
如何在IDEA中进行内容全局查找 在idea中进行全局查找,可以使用快捷键“Ctrl Shift F”或者在菜单栏中选择Edit > Find > Find in Path。在弹出的界面中,输入要查找的内容。如果“Ctrl Shift F”这个快捷键无法实现全局查找,可以尝…...
设计模式之解释器模式
阅读建议 嗨,伙计!刷到这篇文章咱们就是有缘人,在阅读这篇文章前我有一些建议: 本篇文章大概5000多字,预计阅读时间长需要5分钟。本篇文章的实战性、理论性较强,是一篇质量分数较高的技术干货文章&#x…...
粉够荣获淘宝联盟区域理事会常务理事,携手共铸淘客新生态
淘宝联盟区域理事会于2021年成立,首届成立成都、广州、武汉,服务近2000个领军淘宝客企业,作为区域生态与官方交流重要枢纽,理事会举办近百场交流分享会,带动淘客跨域跨业态交流成长。 2023年9月7日第二届淘宝联盟理事…...
Python爬虫是否合法?
Python爬虫是否合法的问题颇具争议,主要涉及到使用爬虫的目的、操作方式以及是否侵犯了其他人的权益。本文将介绍Python爬虫的合法性问题,并提供一些相关的法律指导和最佳实践。 1. 什么是Python爬虫? Python爬虫是一种自动化程序ÿ…...
3.2 IDAPro脚本IDC常用函数
IDA Pro内置的IDC脚本语言是一种灵活的、C语言风格的脚本语言,旨在帮助逆向工程师更轻松地进行反汇编和静态分析。IDC脚本语言支持变量、表达式、循环、分支、函数等C语言中的常见语法结构,并且还提供了许多特定于反汇编和静态分析的函数和操作符。由于其…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
省略号和可变参数模板
本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...
