如何在ChatGPT的API中支持多轮对话
一、问题
ChatGPT的API支持多轮对话。可以使用API将用户的输入发送到ChatGPT模型中,然后将模型生成的响应返回给用户,从而实现多轮对话。可以在每个轮次中保留用户之前的输入和模型生成的响应,以便将其传递给下一轮对话。这种方式可以实现更加自然的对话流程,并提供更好的用户体验。
二、具体实现
当使用 ChatGPT 的 API 时,可以通过在请求中传入 context 或 conversation_id 的方式来实现多轮对话。context 或 conversation_id 可以在第一轮对话时获取到,然后在后续的请求中携带上去,这样 ChatGPT 就可以识别出这是同一个对话。
以下是一个示例,展示了如何在 Java 中通过 HttpURLConnection 来发送请求并获取响应:
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.HttpURLConnection;
import java.net.URL;public class Chatbot {private static final String API_ENDPOINT = "https://api.openai.com/v1/engines/davinci-codex/completions";private String context = null;public String sendMessage(String message) throws Exception {URL url = new URL(API_ENDPOINT);HttpURLConnection connection = (HttpURLConnection) url.openConnection();// 设置请求头connection.setRequestMethod("POST");connection.setRequestProperty("Content-Type", "application/json");connection.setRequestProperty("Authorization", "Bearer <your_api_key>");// 构造请求体String requestBody;if (context == null) {requestBody = String.format("{\"prompt\": \"%s\"}", message);} else {requestBody = String.format("{\"prompt\": \"%s\", \"context\": \"%s\"}", message, context);}// 发送请求connection.setDoOutput(true);OutputStreamWriter writer = new OutputStreamWriter(connection.getOutputStream());writer.write(requestBody);writer.flush();writer.close();// 读取响应BufferedReader reader = new BufferedReader(new InputStreamReader(connection.getInputStream()));StringBuilder responseBuilder = new StringBuilder();String line;while ((line = reader.readLine()) != null) {responseBuilder.append(line);}reader.close();// 解析响应String response = responseBuilder.toString();context = extractContext(response);return extractResponse(response);}private String extractResponse(String response) {// 从响应中提取出 ChatGPT 返回的文本// 这里需要根据具体的 API 返回格式来进行解析return "";}private String extractContext(String response) {// 从响应中提取出下一轮对话所需要的 context// 这里需要根据具体的 API 返回格式来进行解析return "";}
}
在上面的代码中,sendMessage 方法用于发送一个请求并获取 ChatGPT 的回复。如果这是第一轮对话,则只需要将 message 作为 prompt 放入请求体中。如果这不是第一轮对话,则还需要将 context 放入请求体中,这样 ChatGPT 才能知道这是哪一个对话。当得到 ChatGPT 的回复时,我们需要从中提取出响应文本和下一轮对话所需的 context。
注意,由于 ChatGPT 是一个基于 AI 技术的对话系统,其回复有可能是无法理解的,或者包含有不当言论。因此,使用 ChatGPT 时需要谨慎,避免出现不必要的问题。
三、需要注意的问题
ChatGPT的api好像用的模型版本比较低,没有大家使用的ChatGPT智能。
ChatGPT的API使用的是OpenAI公开的预训练模型,版本是有限制的,不会使用最新的模型。但是预训练模型的质量是非常高的,可以实现很好的自然语言处理能力,尤其是在对话生成方面。当然,也可以通过自己训练模型来提升对话生成的质量,但是这需要耗费大量的计算资源和时间。
另外,智能的表现并不只取决于模型本身,还包括数据集的质量、预处理方法、算法优化等多个方面。如果您对ChatGPT的表现有疑问,可以尝试调整输入的方式、格式、内容等,或者通过其他算法优化来改善结果。
四、如何自己训练一个模型
训练一个语言模型是一项非常复杂的任务,需要大量的数据和计算资源。以下是一些基本步骤:
-
收集数据:要训练一个语言模型,首先需要大量的文本数据。这些数据可以是来自互联网上的文章、新闻、博客、论坛等等,也可以是一些特定领域的文本数据。
-
数据清洗和预处理:收集到的数据通常需要进行清洗和预处理,例如去除 HTML 标签、标点符号和停用词等,还需要对数据进行分词、词性标注等处理。
-
构建模型:在收集并预处理好数据之后,需要构建一个语言模型。语言模型通常使用深度学习技术,例如循环神经网络 (RNN)、长短时记忆网络 (LSTM)、Transformer 等等。
-
训练模型:模型构建好之后,需要将数据送入模型进行训练。训练模型需要大量的计算资源,例如 GPU。
-
评估模型:在训练模型之后,需要对模型进行评估。评估模型通常使用一些指标,例如 perplexity 和 BLEU。
-
调整模型和参数:在评估模型之后,可以调整模型和参数以提高模型的性能。
-
部署模型:在模型训练完成之后,需要将模型部署到生产环境中。部署模型通常需要一些软件工程的技能,例如使用 Docker 容器化模型、使用 Flask 或 Django 框架搭建 API 等等。
以上是训练语言模型的基本步骤,其中每个步骤都非常复杂,需要深入的学习和实践。如果你想训练自己的语言模型,建议先从学习深度学习基础开始,然后再逐步深入到语言模型的训练和部署。
五、可以训练ChatGPT的api吗?
ChatGPT是由OpenAI研发的一种预训练语言模型,只能在OpenAI平台上进行训练,目前并不对外开放训练接口。但是,你可以使用OpenAI提供的API接口来使用已经训练好的模型,实现对话生成等功能。同时,OpenAI也提供了一些可以调参的预训练模型,你可以选择合适的模型来满足自己的需求。
相关文章:
如何在ChatGPT的API中支持多轮对话
一、问题 ChatGPT的API支持多轮对话。可以使用API将用户的输入发送到ChatGPT模型中,然后将模型生成的响应返回给用户,从而实现多轮对话。可以在每个轮次中保留用户之前的输入和模型生成的响应,以便将其传递给下一轮对话。这种方式可以实现更…...
华为OD机试模拟题 用 C++ 实现 - 猜字谜(2023.Q1)
最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 最多获得的短信条数(2023.Q1)) 文章目录 最近更新的博客使用说明猜字谜题目输入输出描述备注示例一输入输出示例二输入输出思路Code使用说明 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,...
Containerd容器运行时将会替换Docker?
文章目录一、什么是Containerd?二、Containerd有哪些功能?三、Containerd与Docker的区别四、Containerd是否会替换Docker?五、Containerd安装、部署和使用公众号: MCNU云原生,欢迎微信搜索关注,更多干货&am…...
java虚拟机中对象创建过程
java虚拟机中对象创建过程 我们平常创建一个对象,仅仅只是使用new关键字new一个对象,这样一个对象就被创建了,但是在我们使用new关键字创建对象的时候,在java虚拟机中一个对象是如何从无到有被创建的呢,我们接下来就来…...
3485. 最大异或和
Powered by:NEFU AB-IN Link 文章目录3485. 最大异或和题意思路代码3485. 最大异或和 题意 给定一个非负整数数列 a,初始长度为 N。 请在所有长度不超过 M的连续子数组中,找出子数组异或和的最大值。 子数组的异或和即为子数组中所有元素按位异或得到的…...
SpringBoot:SpringBoot配置文件.properties、.yml 和 .ymal(2)
SpringBoot配置文件1. 配置文件格式1.1 application.properties配置文件1.2 application.yml配置文件1.3 application.yaml配置文件1.4 三种配置文件优先级和区别2. yaml格式2.1 语法规则2.2 yaml书写2.2.1 字面量:单个的、不可拆分的值2.2.2 数组:一组按…...
QT 学习之QPA
QT 为实现支持多平台,实现如下类虚函数 Class Overview QPlatformIntegration QAbstractEventDispatcherQPlatformAccessibilityQPlatformBackingStoreQPlatformClipboardQPlatformCursorQPlatformDragQPlatformFontDatabaseQPlatformGraphicsBufferQPlatformInput…...
Pytorch中FLOPs和Params计算
文章目录一. 含义二. 使用thop库计算FLOPs和Params三. 注意四. 相关链接一. 含义 FLOPs(计算量):注意s小写,是floating point operations的缩写(这里的小s则表示复数),表示浮点运算数ÿ…...
DP1621国产LCD驱动芯片兼容替代HT1621B
目录DP1621简介DP1621芯片特性DP1621简介 DP1621是点阵式存储映射的LCD驱动器芯片,可支持最大128点(32SEG * 4COM)的 LCD屏,也支持2COM和3COM的LCD屏。单片机可通过3/4个通信脚配置显示参数和发送显示数据,也可通过指…...
Linux 用户管理
用户管理 useradd新增用户 格式:useradd [参数] 用户名称 常用参数: -c comment 指定一段注释性描述。 -d 目录 指定用户主目录,如果此目录不存在,则同时使用-m选项,可以创建主目录。 -g 用户组 指定用户所属的用户组…...
前端vue面试题(持续更新中)
vue-router中如何保护路由 分析 路由保护在应用开发过程中非常重要,几乎每个应用都要做各种路由权限管理,因此相当考察使用者基本功。 体验 全局守卫: const router createRouter({ ... }) router.beforeEach((to, from) > {// .…...
Java查漏补缺-从入门到精通汇总
Java查漏补缺(01)计算机的硬件与软件、软件相关介绍、计算机编程语言、Java语言概述、Java开发环境搭建、Java开发工具、注释、API文档、JVM Java查漏补缺(02)关键字、标识符、变量、基本数据类型介绍、基本数据类型变量间运算规…...
软件测试2年半的我,谈谈自己的理解...
软件测试两年半的我,谈谈自己的理解从2020年7月毕业,就成为一名测试仔。日子混了一鲲年,感觉需要好好梳理一下自己的职业道路了,回顾与总结下吧。一、测试的定位做事嘛,搞清楚自己的定位很重要。要搞清楚自己的定位&am…...
什么是SAS硬盘
什么是SAS硬盘SAS是新一代的SCSI技术,和Serial ATA(SATA)硬盘都是采用串行技术,以获得更高的传输速度,并通过缩短连结线改善内部空间等。SAS是并行SCSI接口之后开发出的全新接口。此接口的设计是为了改善存储系统的效能、可用性和扩充性&…...
一文理解服务端渲染SSR的原理,附实战基于vite和webpack打造React和Vue的SSR开发环境
SSR和CSR 首先,我们先要了解什么是SSR和CSR,SSR是服务端渲染,CSR是客户端渲染,服务端渲染是指 HTTP 服务器直接根据用户的请求,获取数据,生成完整的 HTML 页面返回给客户端(浏览器)展…...
Matlab 实用小函数汇总
文章目录Part.I 元胞相关Chap.I 创建空 char 型元胞Part.II 矩阵相关Chap.I 矩阵插入元素Part.III 字符串相关Chap.I 获取一个文件夹下所有文件的文件名的部分内容Part.IV 结构体相关Chap.I 读取结构体Chap.II 取结构体中某一字段的所有值本篇博文记录一些笔者使用 Matlab 时&a…...
Echarts 仪表盘倾斜一定角度显示,非中间对称
第024个点击查看专栏目录大多数的情况下,制作的仪表盘都是中规中矩,横向中间对称,但是生活中的汽车,摩托车等仪表盘确是要倾斜一定角度的,Echarts中我们就模拟一个带有倾斜角度的仪表盘。核心代码见示例源代码 文章目录…...
Vue中如何利用websocket实现实时通讯
首先我们可以先做一个简单的例子来学习一下简单的websocket模拟聊天对话的功能 原理很简单,有点像VUE中的EventBus,用emit和on传来传去 首先我们可以先去自己去用node搭建一个本地服务器 步骤如下 1.新建一个app.js,然后创建pagejson.js文…...
力扣解法汇总1144. 递减元素使数组呈锯齿状
目录链接: 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目: https://github.com/September26/java-algorithms 原题链接:力扣 描述: 给你一个整数数组 nums,每次 操作 会从中选择一个元素并 将该元素的…...
Spring彻头彻尾的讲解,按照Spring框架启动流程,逐步剖析问题,不再是大杂烩!
文章目录1. 定义Spring Bean篇1.1 定义Spring Bean的几种方式1.1.1 XML文件定义Spring Bean1.1.2 JavaConfig定义Spring Bean1.1.3 Component注解定义SpringBean1.2 装配Spring Bean的四种常用方式1.2.1 手动装配 XML文件1.2.2 自动装配 XML文件1.2.3 手动装配 JavaConfig文…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态
前言 在人工智能技术飞速发展的今天,深度学习与大模型技术已成为推动行业变革的核心驱动力,而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心,系统性地呈现了两部深度技术著作的精华:…...
