Python实现猎人猎物优化算法(HPO)优化XGBoost回归模型(XGBRegressor算法)项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。


1.项目背景
猎人猎物优化搜索算法(Hunter–prey optimizer, HPO)是由Naruei& Keynia于2022年提出的一种最新的优化搜索算法。受到捕食动物(如狮子、豹子和狼)和猎物(如雄鹿和瞪羚)的行为的启发,他们根据猎人和猎物的位置移动方法设计了一种新型的搜索方式及自适应度更新的方法。
本项目通过HPO猎人猎物优化算法寻找最优的参数值来优化XGBoost回归模型。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
| 编号 | 变量名称 | 描述 |
| 1 | x1 | |
| 2 | x2 | |
| 3 | x3 | |
| 4 | x4 | |
| 5 | x5 | |
| 6 | x6 | |
| 7 | x7 | |
| 8 | x8 | |
| 9 | x9 | |
| 10 | x10 | |
| 11 | y | 因变量 |
数据详情如下(部分展示):

3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共1000条数据。
关键代码:

3.3 数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4.探索性数据分析
4.1 y变量直方图
用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-400~400之间。
4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:

5.2 数据集拆分
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建HPO猎人猎物优化算法优化XGBoost回归模型
主要使用HPO猎人猎物优化算法优化XGBoost回归算法,用于目标回归。
6.1 HPO猎人猎物优化算法寻找的最优参数
最优参数:
6.2 最优参数值构建模型
| 编号 | 模型名称 | 参数 |
| 1 | XGBoost回归模型 | n_estimators=best_n_estimators |
| 2 | learning_rate=best_learning_rate |
7.模型评估
7.1 评估指标及结果
评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。
| 模型名称 | 指标名称 | 指标值 |
| 测试集 | ||
| XGBoost回归模型 | R方 | 0.8543 |
| 均方误差 | 3110.5038 | |
| 可解释方差值 | 0.8561 | |
| 平均绝对误差 | 43.5969 | |
从上表可以看出,R方0.8543,为模型效果较好。
关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。
8.结论与展望
综上所述,本文采用了HPO猎人猎物优化算法寻找XGBoost回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。
# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:# 链接:https://pan.baidu.com/s/1LuNsZzY4Mpf1Is7r35FrBg
# 提取码:h1oi
更多项目实战,详见机器学习项目实战合集列表:
机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客
相关文章:
Python实现猎人猎物优化算法(HPO)优化XGBoost回归模型(XGBRegressor算法)项目实战
说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 猎人猎物优化搜索算法(Hunter–prey optimizer, HPO)是由Naruei& Keynia于2022年提出的一种最新的…...
pandas读写json的知识点
pandas对象可以直接转换为json,使用to_json即可。里面的orient参数很重要,可选值为columns,index,records,values,split,table A B C x 1 4 7 y 2 5 8 z 3 6 9 In [236]: dfjo.to_json(orient"columns") Out[236]: {"A":{"x&qu…...
图论——Dijkstra算法matlab代码
Dijkstra算法步骤 (1)构造邻接矩阵 (2)定义起始点 (3)运行代码 M[ 0 5 9 Inf Inf Inf InfInf 0 Inf Inf 12 Inf InfInf 3 0 15 Inf 23 InfInf 6 …...
[MySQL] MySQL表的基础操作
文章目录 一、创建表 1、1 SQL语法 1、2 实例演示 二、查询表 三、修改表 3、1 修改表名字 3、2 新增列(字段) 3、3 修改列类型 3、4 修改列名 3、5 删除表 四、总结 🙋♂️ 作者:Ggggggtm 🙋♂️ 👀 专…...
SQL 部分解释。
这段SQL代码的主要作用是从V_order_L表中查询数据,并与V_AATB1DU_F52_M表进行左连接。查询的结果会按照订单时间(orderTime)、POS代码(posCode)和区间名称(f.DName)进行分组。 具体来说…...
利用LangChain实现RAG
检索增强生成(Retrieval-Augmented Generation, RAG)结合了搜寻检索生成能力和自然语言处理架构,透过这个架构,模型可以从外部知识库搜寻相关信息,然后使用这些信息来生成response。要完成检索增强生成主要包含四个步骤…...
零基础学习Matlab,适合入门级新手,了解Matlab
一、认识Matlab Matlab安装请参见博客 安装步骤 1.界面 2.清空环境变量及命令 (1)clear all :清除Workspace中的所有变量 (2)clc:清除Command Window中的所有命令 二、Matlab基础 1.变量命名规则 &a…...
CCF ChinaSoft 2023 论坛巡礼 | 自动驾驶仿真测试论坛
2023年CCF中国软件大会(CCF ChinaSoft 2023)由CCF主办,CCF系统软件专委会、形式化方法专委会、软件工程专委会以及复旦大学联合承办,将于2023年12月1-3日在上海国际会议中心举行。 本次大会主题是“智能化软件创新推动数字经济与社…...
vue封装useWatch hook支持停止监听和重启监听功能
import { watch, reactive } from vue;export function useWatch(source, cb, options) {const state reactive({stop: null});function start() {state.stop watch(source, cb, options);}function stop() {state.stop();state.stop null;}// 返回一个对象,包含…...
智能配方颗粒管理系统解决方案,专业实现中医药产业数字化-亿发
“中药配方颗粒”,又被称为免煎中药,源自传统中药饮片,经过提取、分离、浓缩、干燥、制粒、包装等工艺加工而成。这种新型配方药物完整保留了原中药饮片的所有特性。既能满足医师的辨证论治和随症加减需求,同时具备强劲好人高效的…...
PXI总线测试模块-6951E 信号分析仪
6951E 信号分析仪 频率范围:10Hz~26.5GHz 6951E信号分析仪率范围覆盖10Hz~26.5GHz、带宽40MHz,具备频谱分析、相邻信道功率测试、模拟解调、噪声系数测试等多种测量功能。 6951E信号分析仪采用PXIe总线3U 4槽结构形式ÿ…...
精确杂草控制植物检测模型的改进推广
Improved generalization of a plant-detection model for precision weed control 摘要1、介绍2、结论摘要 植物检测模型缺乏普遍性是阻碍实现自主杂草控制系统的主要挑战之一。 本文研究了训练和测试数据集分布对植物检测模型泛化误差的影响,并使用增量训练来减小泛化误差。…...
C++:对象成员方法的使用
首先复习一下const : //const: //Complex* const pthis1 &ca; //约束指针自身 不能指向其他对象 // pthis1 &cb; err //pthis1->real; //const Complex* const pthis1 &ca;//指针指向 指针自身 都不能改 //pthis1->real; 只可读 …...
深入了解SpringMvc接收数据
目录 一、访问路径(RequestMapping) 1.1 访问路径注解作用域 1.2 路径精准(模糊)匹配 1.3 访问路径限制请求方式 1.4 进阶访问路径请求注解 1.5 与WebServlet的区别 二、接收请求数据 2.1 请求param参数 2.2 请求路径参数 2.3 请求…...
华东“启明”青少年音乐艺术实践中心揭幕暨中国“启明”巴洛克合奏团首演音乐会
2023年11月11日,华东“启明”青少年音乐艺术实践中心在上海揭幕,中国“启明”巴洛克合奏团开启了首场音乐会。 华东“启明”青少年音乐艺术实践中心由中共宁波市江北区委宣传部与上音管风琴艺术中心联合指导,宁波音乐港、宁波市江北区洛奇音乐…...
17. 机器学习——SVM
机器学习面试题汇总与解析——SVM 本章讲解知识点 什么是 SVMSVM 的基本原理线性不可分 SVM非线性 SVMSVM 优缺点本专栏适合于Python已经入门的学生或人士,有一定的编程基础。 本专栏适合于算法工程师、机器学习、图像处理求职的学生或人士。 本专栏针对面试题答案进行了优化…...
算法导论笔记5:贪心算法
P216 第15章动态规划 最优子结构 具有它可能意味着适合应用贪心策略 动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法。 剪切-粘贴技术证明 每个子问题的解就是它本身的最优解(利用反证法࿰…...
Vue的高级表格组件库【vxe-table】
文章目录 前言vxe-table官网实现表头拖拽树形表格全键盘操作后言 前言 hello world欢迎来到前端的新世界 😜当前文章系列专栏:前端系列文章 🐱👓博主在前端领域还有很多知识和技术需要掌握,正在不断努力填补技术短板…...
从0到0.01入门React | 002.精选 React 面试题
🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…...
假冒 Skype 应用程序网络钓鱼分析
参考链接: https://slowmist.medium.com/fake-skype-app-phishing-analysis-35c1dc8bc515 背景 在Web3世界中,涉及假冒应用程序的网络钓鱼事件相当频繁。慢雾安全团队此前曾发表过分析此类网络钓鱼案例的文章。由于Google Play在中国无法访问,许多用户…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
