当前位置: 首页 > news >正文

Python实现猎人猎物优化算法(HPO)优化XGBoost回归模型(XGBRegressor算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

猎人猎物优化搜索算法(Hunter–prey optimizer, HPO)是由Naruei& Keynia于2022年提出的一种最新的优化搜索算法。受到捕食动物(如狮子、豹子和狼)和猎物(如雄鹿和瞪羚)的行为的启发,他们根据猎人和猎物的位置移动方法设计了一种新型的搜索方式及自适应度更新的方法。

本项目通过HPO猎人猎物优化算法寻找最优的参数值来优化XGBoost回归模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

   

从上图可以看到,总共有11个变量,数据中无缺失值,共1000条数据。

关键代码:  

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:    

4.探索性数据分析

4.1 y变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-400~400之间。

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建HPO猎人猎物优化算法优化XGBoost回归模型

主要使用HPO猎人猎物优化算法优化XGBoost回归算法,用于目标回归。

6.1 HPO猎人猎物优化算法寻找的最优参数  

最优参数:

  

6.2 最优参数值构建模型

编号

模型名称

参数

1

XGBoost回归模型

n_estimators=best_n_estimators

2

learning_rate=best_learning_rate

7.模型评估

7.1 评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

模型名称

指标名称

指标值

测试集

XGBoost回归模型

  R方

0.8543

均方误差

3110.5038

可解释方差值

0.8561

平均绝对误差

43.5969

从上表可以看出,R方0.8543,为模型效果较好。

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。   

8.结论与展望

综上所述,本文采用了HPO猎人猎物优化算法寻找XGBoost回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。  

# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:# 链接:https://pan.baidu.com/s/1LuNsZzY4Mpf1Is7r35FrBg 
# 提取码:h1oi

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


相关文章:

Python实现猎人猎物优化算法(HPO)优化XGBoost回归模型(XGBRegressor算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 猎人猎物优化搜索算法(Hunter–prey optimizer, HPO)是由Naruei& Keynia于2022年提出的一种最新的…...

pandas读写json的知识点

pandas对象可以直接转换为json,使用to_json即可。里面的orient参数很重要,可选值为columns,index,records,values,split,table A B C x 1 4 7 y 2 5 8 z 3 6 9 In [236]: dfjo.to_json(orient"columns") Out[236]: {"A":{"x&qu…...

图论——Dijkstra算法matlab代码

Dijkstra算法步骤 (1)构造邻接矩阵 (2)定义起始点 (3)运行代码 M[ 0 5 9 Inf Inf Inf InfInf 0 Inf Inf 12 Inf InfInf 3 0 15 Inf 23 InfInf 6 …...

[MySQL] MySQL表的基础操作

文章目录 一、创建表 1、1 SQL语法 1、2 实例演示 二、查询表 三、修改表 3、1 修改表名字 3、2 新增列(字段) 3、3 修改列类型 3、4 修改列名 3、5 删除表 四、总结 🙋‍♂️ 作者:Ggggggtm 🙋‍♂️ 👀 专…...

SQL 部分解释。

这段SQL代码的主要作用是从V_order_L表中查询数据,并与V_AATB1DU_F52_M表进行左连接。查询的结果会按照订单时间(orderTime)、POS代码(posCode)和区间名称(f.DName)进行分组。 具体来说&#xf…...

利用LangChain实现RAG

检索增强生成(Retrieval-Augmented Generation, RAG)结合了搜寻检索生成能力和自然语言处理架构,透过这个架构,模型可以从外部知识库搜寻相关信息,然后使用这些信息来生成response。要完成检索增强生成主要包含四个步骤…...

零基础学习Matlab,适合入门级新手,了解Matlab

一、认识Matlab Matlab安装请参见博客 安装步骤 1.界面 2.清空环境变量及命令 (1)clear all :清除Workspace中的所有变量 (2)clc:清除Command Window中的所有命令 二、Matlab基础 1.变量命名规则 &a…...

CCF ChinaSoft 2023 论坛巡礼 | 自动驾驶仿真测试论坛

2023年CCF中国软件大会(CCF ChinaSoft 2023)由CCF主办,CCF系统软件专委会、形式化方法专委会、软件工程专委会以及复旦大学联合承办,将于2023年12月1-3日在上海国际会议中心举行。 本次大会主题是“智能化软件创新推动数字经济与社…...

vue封装useWatch hook支持停止监听和重启监听功能

import { watch, reactive } from vue;export function useWatch(source, cb, options) {const state reactive({stop: null});function start() {state.stop watch(source, cb, options);}function stop() {state.stop();state.stop null;}// 返回一个对象,包含…...

智能配方颗粒管理系统解决方案,专业实现中医药产业数字化-亿发

“中药配方颗粒”,又被称为免煎中药,源自传统中药饮片,经过提取、分离、浓缩、干燥、制粒、包装等工艺加工而成。这种新型配方药物完整保留了原中药饮片的所有特性。既能满足医师的辨证论治和随症加减需求,同时具备强劲好人高效的…...

PXI总线测试模块-6951E 信号分析仪

6951E 信号分析仪 频率范围:10Hz~26.5GHz 6951E信号分析仪率范围覆盖10Hz~26.5GHz、带宽40MHz,具备频谱分析、相邻信道功率测试、模拟解调、噪声系数测试等多种测量功能。 6951E信号分析仪采用PXIe总线3U 4槽结构形式&#xff…...

精确杂草控制植物检测模型的改进推广

Improved generalization of a plant-detection model for precision weed control 摘要1、介绍2、结论摘要 植物检测模型缺乏普遍性是阻碍实现自主杂草控制系统的主要挑战之一。 本文研究了训练和测试数据集分布对植物检测模型泛化误差的影响,并使用增量训练来减小泛化误差。…...

C++:对象成员方法的使用

首先复习一下const : //const: //Complex* const pthis1 &ca; //约束指针自身 不能指向其他对象 // pthis1 &cb; err //pthis1->real; //const Complex* const pthis1 &ca;//指针指向 指针自身 都不能改 //pthis1->real; 只可读 …...

深入了解SpringMvc接收数据

目录 一、访问路径(RequestMapping) 1.1 访问路径注解作用域 1.2 路径精准(模糊)匹配 1.3 访问路径限制请求方式 1.4 进阶访问路径请求注解 1.5 与WebServlet的区别 二、接收请求数据 2.1 请求param参数 2.2 请求路径参数 2.3 请求…...

华东“启明”青少年音乐艺术实践中心揭幕暨中国“启明”巴洛克合奏团首演音乐会

2023年11月11日,华东“启明”青少年音乐艺术实践中心在上海揭幕,中国“启明”巴洛克合奏团开启了首场音乐会。 华东“启明”青少年音乐艺术实践中心由中共宁波市江北区委宣传部与上音管风琴艺术中心联合指导,宁波音乐港、宁波市江北区洛奇音乐…...

17. 机器学习——SVM

机器学习面试题汇总与解析——SVM 本章讲解知识点 什么是 SVMSVM 的基本原理线性不可分 SVM非线性 SVMSVM 优缺点本专栏适合于Python已经入门的学生或人士,有一定的编程基础。 本专栏适合于算法工程师、机器学习、图像处理求职的学生或人士。 本专栏针对面试题答案进行了优化…...

算法导论笔记5:贪心算法

P216 第15章动态规划 最优子结构 具有它可能意味着适合应用贪心策略 动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法。 剪切-粘贴技术证明 每个子问题的解就是它本身的最优解(利用反证法&#xff0…...

Vue的高级表格组件库【vxe-table】

文章目录 前言vxe-table官网实现表头拖拽树形表格全键盘操作后言 前言 hello world欢迎来到前端的新世界 😜当前文章系列专栏:前端系列文章 🐱‍👓博主在前端领域还有很多知识和技术需要掌握,正在不断努力填补技术短板…...

从0到0.01入门React | 002.精选 React 面试题

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…...

假冒 Skype 应用程序网络钓鱼分析

参考链接: https://slowmist.medium.com/fake-skype-app-phishing-analysis-35c1dc8bc515 背景 在Web3世界中,涉及假冒应用程序的网络钓鱼事件相当频繁。慢雾安全团队此前曾发表过分析此类网络钓鱼案例的文章。由于Google Play在中国无法访问,许多用户…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

ios苹果系统,js 滑动屏幕、锚定无效

现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...

基于 TAPD 进行项目管理

起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦&#xff0…...