当前位置: 首页 > news >正文

【LeetCode】67. 二进制求和

67. 二进制求和

难度:简单

题目

给你两个二进制字符串 ab ,以二进制字符串的形式返回它们的和。

示例 1:

输入:a = "11", b = "1"
输出:"100"

示例 2:

输入:a = "1010", b = "1011"
输出:"10101"

提示:

  • 1 <= a.length, b.length <= 10^4
  • ab 仅由字符 '0''1' 组成
  • 字符串如果不是 "0" ,就不含前导零

个人题解

思路:

  1. 从后往前遍历字符逐个判断即可
  2. 最后考虑是否进位
  3. sum & 1 等价于 sum % 2
class Solution {public String addBinary(String a, String b) {StringBuilder ans = new StringBuilder();int ca = 0;for (int i = a.length() - 1, j = b.length() - 1; i >= 0 || j >= 0; i--, j--) {int sum = ca;sum += i>= 0 ? a.charAt(i) - '0' : 0;sum += j>= 0 ? b.charAt(j) - '0' : 0;ca = sum / 2;ans.append(sum & 1);}if (ca == 1) {ans.append(1);}return ans.reverse().toString();}
}

相关文章:

【LeetCode】67. 二进制求和

67. 二进制求和 难度&#xff1a;简单 题目 给你两个二进制字符串 a 和 b &#xff0c;以二进制字符串的形式返回它们的和。 示例 1&#xff1a; 输入:a "11", b "1" 输出&#xff1a;"100"示例 2&#xff1a; 输入&#xff1a;a "…...

【LeetCode刷题笔记】二叉树(一)

102. 二叉树的层序遍历 解题思路: 1. BFS广度优先遍历 ,使用队列,按层访问 解题思路: 2. 前序遍历 , 递归 ,在递归方法参数中,将 层索引...

NativeScript开发ios应用,怎么生成测试程序?

在 NativeScript 中&#xff0c;要部署 iOS 应用程序&#xff0c;你需要遵循以下一般步骤&#xff1a; 1、确保开发环境&#xff1a; 确保你的开发环境中已经安装了 Xcode&#xff0c;并且你有一个有效的 Apple 开发者账号。 2、构建 iOS 应用&#xff1a; 在你的 NativeScri…...

Js面试题:说一下js的模块化?

作用&#xff1a; 一个模块就是实现某个特定功能的文件&#xff0c;在文件中定义的变量、函数、类都是私有的&#xff0c;对其他文件不可见。 为了解决引入多个js文件时&#xff0c;出现 命名冲突、污染作用域 等问题 AMD&#xff1a; 浏览器端模块解决方案 AMD即是“异步模块定…...

媒体转码软件Media Encoder 2024 mac中文版功能介绍

Media Encoder 2024 mac是一款媒体转码软件&#xff0c;它可以将视频从一种格式转码为另一种格式&#xff0c;支持H.265、HDR10等多种编码格式&#xff0c;同时优化了视频质量&#xff0c;提高了编码速度。此外&#xff0c;Media Encoder 2024还支持收录、创建代理和输出各种格…...

整治PPOCRLabel中cv2文件读取问题(更新中)

PPOCRLabel 使用PPOCRLabel对ocr预标注结果进行纠正由于PaddleOCR代码库十分混乱,路径经常乱调pip和代码库的代码&#xff08;pip库和源码冲突&#xff09;,经常报错&#xff0c;因此paddleocr和ppocrlabel都是使用pip包;PPOCRLabel中使用了cv2进行图片数据的读取&#xff0c;…...

网络运维Day09-补充

文章目录 rsync增量同步scp与rsync的区别rsync常用选项 rsync本地实验rsync远程同步实验练习上传练习下载 总结 rsync增量同步 rsync是增量同步的一种工具&#xff0c;可以实现本地目录之间数据同步&#xff0c;也可以实现远程跨主机之间数据同步 scp与rsync的区别 scp属于全…...

【C++】【Opencv】minMaxLoc()函数详解和示例

minMaxLoc&#xff08;&#xff09;函数 是 OpenCV 库中的一个函数&#xff0c;用于找到一个多维数组中的最小值和最大值&#xff0c;以及它们的位置。这个函数对于处理图像和数组非常有用。本文通过参数和示例详解&#xff0c;帮助大家理解和使用该函数。 参数详解 函数原型…...

用Go实现网络流量解析和行为检测引擎

1.前言 最近有个在学校读书的迷弟问我:大德德, 有没有这么一款软件, 能够批量读取多个抓包文件,并把我想要的数据呈现出来, 比如:源IP、目的IP、源mac地址、目的mac地址等等。我说&#xff1a;“这样的软件你要认真找真能找出不少开源软件, 但毕竟没有你自己的灵魂在里面,要不…...

Mysql数据备份 — mysqldump

一 备份类型 - 逻辑备份&#xff08;mysqldump&#xff09;&#xff1a; - 优点&#xff1a; - 恢复简单&#xff0c;可以使用管道将他们输入到mysql。 - 与存储引擎无关&#xff0c;因为是从MySQL服务器中提取数据而生成的&#xff0c;所以消除了底层数据…...

vue使用Echarts5实现词云图

先上官网 词云图有些特殊&#xff0c;它属于Echarts 的扩展&#xff0c;需要额外安装Echarts-wordcloud包。 Echarts 官网 Echarts-wordcloud 词云图官网 先安装 npm install echarts npm install echarts-wordcloud再引入 echarts选一个引入就行&#xff1b;4或5版本都可以 …...

带有密码的Excel只读模式,如何取消?

Excel文件打开之后发现是只读模式&#xff0c;想要退出只读模式&#xff0c;但是只读模式是带有密码的&#xff0c;该如何取消带有密码的excel只读文件呢&#xff1f; 带有密码的只读模式&#xff0c;是设置了excel文件的修改权限&#xff0c;取消修改权限&#xff0c;我们需要…...

Linux下基本操作命令

一、基础命令 1. pwd 命令 pwd命令用于显示当前所在的工作目录的全路径名称。该命令无需任何参数&#xff0c;只需在终端窗口中输入 pwd 命令即可使用。 2. cd 命令 cd命令用于更改当前工作目录。该命令需要一个参数&#xff1a;目标目录名称。例如&#xff0c;若要进入 Do…...

JVS低代码表单自定义按钮的使用说明和操作示例

在普通的表单设计中&#xff0c;虽然自带的【提交】、【重置】、【取消】按钮可以满足基本操作需求&#xff0c;但在面对更多复杂的业务场景时&#xff0c;这些按钮的显示控制就显得有些力不从心。为了更好地满足用户在表单操作过程中的个性化需求&#xff0c;JVS低代码推出了表…...

C++--二叉树经典例题

本文&#xff0c;我们主要讲解一些适合用C的数据结构来求解的二叉树问题&#xff0c;其中涉及了二叉树的遍历&#xff0c;栈和队列等数据结构&#xff0c;递归与回溯等知识&#xff0c;希望可以帮助你进一步理解二叉树。 目录​​​​​​​ 1.二叉树的层序遍历 2.二叉树的公…...

软件测试需要学习什么?好学吗?需要学多久?到底是报班好还是自学好?

前言&#xff1a; 我发现很多的小伙伴刚刚毕业和想转行的小伙伴对于软件测试很陌生&#xff0c;其中很有很多的小伙伴还踩不少的坑&#xff0c;花费了大量的精力和时间去探索&#xff0c;结果还是一无所获。这里给大家出一期关于软件测试萌新的疑惑&#xff0c;看完这篇文章你就…...

Ubuntu搭建AI画图工具stable diffusion-webui

Ubuntu搭建 安装依赖项 安装以下依赖项&#xff1a; # Debian-based: sudo apt install wget git python3 python3-venv libgl1 libglib2.0-0# Red Hat-based: sudo dnf install wget git python3# Arch-based: sudo pacman -S wget git python3下载并安装WebUI 进入您想要安…...

智能优化算法(一):伪随机数的产生

文章目录 1.伪随机数介绍1.1.伪随机产生的意义1.2.伪随机产生的过程 2.产生U(0,1)的乘除同余法2.1.原始的乘同余法2.2.改进的乘同余法 3.产生正态分布的伪随机数4.基于逆变法产生伪随机数 1.伪随机数介绍 1.1.伪随机产生的意义 1.随机数的产生是进行随机优化的第一步也是最重要…...

python 调用Oracle有返回参数的存储过程

python 调用Oracle有返回参数的存储过程 1. 存储过程 create or replace procedure pro_test_args(a in integer,b in integer, c out integer) is beginc: a * b ;end pro_test_args;2. Python调用存储过程 import cx_Oracle import os import sys# 连接数据库 #conn cx_O…...

700. 二叉搜索树中的搜索

原题链接700. 二叉搜索树中的搜索 思路&#xff1a; 给定的就是一个二叉搜索树 二叉搜索树是一个有序树&#xff1a; 若它的左子树不空&#xff0c;则左子树上所有结点的值均小于它的根结点的值&#xff1b; 若它的右子树不空&#xff0c;则右子树上所有结点的值均大于它的根结…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

在树莓派上添加音频输入设备的几种方法

在树莓派上添加音频输入设备可以通过以下步骤完成&#xff0c;具体方法取决于设备类型&#xff08;如USB麦克风、3.5mm接口麦克风或HDMI音频输入&#xff09;。以下是详细指南&#xff1a; 1. 连接音频输入设备 USB麦克风/声卡&#xff1a;直接插入树莓派的USB接口。3.5mm麦克…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...