当前位置: 首页 > news >正文

Java 算法篇-深入了解单链表的反转(实现:用 5 种方式来具体实现)

🔥博客主页: 小扳_-CSDN博客
❤感谢大家点赞👍收藏⭐评论✍
  

 

 

 

文章目录

        1.0 单链表的反转说明

        2.0 单链表的创建

        3.0 实现单链表反转的五种方法

        3.1 实现单链表反转 - 循环复制(迭代法)

        3.2 实现单链表反转 - 头插法

        3.3 实现单链表反转 - 递归法

        3.4 实现单链表反转 - 三指针法

        3.5 实现单链表反转 - 第二种头插法

        4.0 实现单链表反转的五种完整代码


        1.0 单链表的反转说明

        单链表的反转是指将链表中的节点顺序逆转,即原先的链表尾部变成了头部,头部变成了尾部。比如,[1,2,3,4,5,6,7] 将这个链表的值反转得到的结果为:[7,6,5,4,3,2,1],需要注意的是,可以用值打印出来会更好观察链表反转后的结果。

        2.0 单链表的创建

        具体的创建思路:首先要把节点进行封装成单独的类,该类中的成员包括:int value 存放值Node next 引用下一个节点。由于该节点类为链表中的一个组成部分,因此,将该类设为静态内部类,外部类的成员为哨兵节点

代码如下:

import java.util.Iterator;public class Linked implements Iterable<Integer>{private final Node hand;private int size;static class Node {public int value;public Node next;public Node(int value, Node next) {this.value = value;this.next = next;}}public Linked() {hand = new Node(0,null);}public void addLast (int value) {Node p = hand;while (p.next != null) {p = p.next;}p.next = new Node(value, null);size++;}public void addFirst(int value) {hand.next = new Node(value,hand.next);size++;}@Overridepublic Iterator<Integer> iterator() {return new Iterator<Integer>() {Node p = hand.next;@Overridepublic boolean hasNext() {return p != null;}@Overridepublic Integer next() {int k = p.value;p = p.next;return k;}};}}

        为了方便对反转的五种方法进行讲解,实现了以上的头插节点尾插节点用迭代器循环节点的值。

本篇重点是反转的五种的方法,所以对以上的实现的 API 不太了解的话,点击以下链接去了解一下:   Java 数据结构篇-实现单链表核心API-CSDN博客

        3.0 实现单链表反转的五种方法

        迭代法:遍历链表,依次改变节点的指针方向,使其指向前一个节点。

        递归法:利用递归函数,先反转后续节点,然后再将当前节点的指针指向前一个节点。

        头插法:从头到尾遍历原链表,依次将每个节点插入到新链表的头部,形成新的反转链表。

        :利用栈的特性,将链表节点依次入栈,然后依次出栈构建新的反转链表。

        三指针法:使用三个指针分别指向当前节点、前一个节点和后一个节点,依次改变节点的指针方向,实现链表的反转。

        3.1 实现单链表反转 - 循环复制(迭代法

        思路为:遍历旧的链表来取得每个节点的对应的值,然后新链表根据得到的值来创建节点进行头插节点,这样就实现了链表反转了。需要注意的是,这个方法并没有改变旧链表

代码如下:

    //方法一: 循环复制public Linked reverseMethod1 (Linked linked) {Linked linked1 = new Linked();for (Integer integer : linked) {linked1.addFirst(integer);}return linked1;}

        分析以上代码:先创建一个新链表 linked1 然后调用头插节点的方法,通过传入旧节点的值来创建对象,也就是节点。需要注意的是,这里的增强 for 循环是已经实现了。

        3.2 实现单链表反转 - 头插法

        通过改变旧节点的节点指向来实现链表反转,当反转结束之后,旧的链表顺序就会被改变。具体思路:先要对旧节点的 hand.next 头节点从该链表独立出来,对于旧链表来说就是删除头节点,不过要记录要删除的节点,得到这个头节点之后,该节点头插到新的链表中,一直循环往复下去,直到 hand.next == null 结束循环。

        对于这个链表来说,这就可以把 remove 这个节点删除了,也为头删节点。当 hand.next = null 就说明了没有节点了,就应该结束循环了。

        这就是头插节点的流程。

代码如下:

    //方法二: 改变旧节点的指向public Linked reverseMethod2(Linked linked) {Linked linkedNew = new Linked();Node handNew = linkedNew.hand;while (hand.next != null) {//先头删Node temp = linked.hand.next;linked.hand.next = temp.next;//再头插Node tp = handNew.next;handNew.next = temp;temp.next = tp;}return linkedNew;}

对以上代码进行分析:

         先创建一个新的链表,在删除头节点前,需要将要删除的节点记录起来,如果一个对象没被引用就会被 JVM 自动回收,然后头节点指向删除节点的指向下一个的节点。头插节点前,需要将 hand.next 同样要记录,然后头节点指向新的节点,新的节点的下一个节点,正就是原先的 hand.next

        3.3 实现单链表反转 - 递归法

         思路:通过递归这种方式,先递出到 “底” ,得到旧链表的最后一个节点,所以递归结束的条件也就是 temp.next == null,返回该节点 temp 也就是最后的节点。递归的函数也很容易可以想出来为: 调用自己的方法名(node.next) 。

代码如下:

    //方法三: 递归public Linked reverseMethod3(Linked linked) {Linked linked1 = new Linked();linked1.hand.next = reversion(linked.hand.next);return linked1;}public Node reversion (Node node) {if (node == null || node.next == null) {return node;}Node last = reversion(node.next);node.next.next = node;node.next = null;return last;}

        对以上代码进行分析:先创建一个新的链表 linkded1 ,调用 reversion()  这个方法来得到头节点。具体来看是如何得到头节点,显而易见,就是通过递归,递到底(到尽头)取到最后一个节点,然后将这个尾节点一直返回出来,OK,这里就拿到了新链表的头节点了。接下来要考虑的是,如何将剩下的节点反转呢?

 先来看看递归的流程图:

     

分析如下:  

        假设有五个节点,在递归回归的过程中,需要做的事第五个节点指向第四个节点,第四个节点指向第三个节点...一直下去,这样是不是就实现了每个节点指向都反转了。但是需要注意的是,当第二个节点指向第一个节点,这里都没有问题,我们很容易会忽略,第一个节点原先就指向第二个节点,因此,会出现死循环,解决办法:先暂时将被指向的节点赋值为:null ,这样就完美解决了。

        3.4 实现单链表反转 - 三指针法

        实现思路:在原先链表中进行改变每个节点的引用,先定义出三个变量分别为 o1,o2,n1,一开始的时候 o1 , n1指向链表中的 hand 头节点(先来搞定没有哨兵的链表),对于 o2 指向 hand.next 。接下来就可以开始移动 o2,n1 这个两个指针了,主要的是 o1 保持不变,永远指向 hand 节点,先让 hand.next = o2.next ,这个意思就是将 hand.next 的头节点的下一个节点从链表中移出,然后将移出来的节点指向 n1 ,最后 o2 = n1 将 n1 赋值给 o2 ,o2 再接着指向 hand.next 的节点

几个简单的过程:

代码如下:

    //方法四:双引用public Linked reverseMethod4(Linked linked) {linked.hand.next = dualPointers(linked.hand.next);return linked;}public Node dualPointers(Node hand) {Node o1 = hand;Node n1 = hand;Node o2 = o1.next;while (o2 != null) {o1.next = o2.next;o2.next = n1;n1 = o2;o2 = o1.next;}return n1;}

        通过以上的简单几个过程且结合代码来分析,应该会有一点点感觉,来总结以下,对于 o1 的动作就是站在 hand 节点中 "一动不动", 对于 o2 可以将它看作搬运工,不断搬运 hand.next 的节点运到 n1 节点的前面(n1 的左边),具体就是先要将 o2.next 节点被 hand.next 引用,接着就是搬运了, o2.next 指向 n1 的节点,然后 n1 需要往后跳一格(往左边移动一个节点)即将 o2 赋值给 n1,然后 o2 就返回去指向 o1.next 的节点了,循环往复下去,直到当 o1.next == null 时,就该结束循环了

        3.5 实现单链表反转 - 第二种头插法

        思路:遍历旧链表的每一个节点,然后直接插入到新链表中,这个方法个第一种头插很相似,区别就是第一种头插的方法是面向对象编程的,第二种头插的方法是面向过程来编程的。

代码如下:

    //方法五:public Linked reverseMethod5(Linked linked) {Node o1 = linked.hand.next;Linked linked1 = new Linked();Node n1 = null;while (o1 != null) {Node temp = o1.next;o1.next = n1;n1 = o1;o1 = temp;}linked1.hand.next = n1;return linked1;}

        这里也运用到了头删还有头插,跟之前的头插有所不同,这里的头插是将插入进来的节点变成为新链表的头节点,直到遍历结束为止。

        4.0 实现单链表反转的五种完整代码

import java.util.Iterator;public class Linked implements Iterable<Integer>{public Node hand;private int size;static class Node {public int value;public Node next;public Node(int value, Node next) {this.value = value;this.next = next;}}public Linked() {hand = new Node(0,null);}public void addLast (int value) {Node p = hand;while (p.next != null) {p = p.next;}p.next = new Node(value, null);size++;}public void addFirst(int value) {hand.next = new Node(value,hand.next);size++;}@Overridepublic Iterator<Integer> iterator() {return new Iterator<Integer>() {Node p = hand.next;@Overridepublic boolean hasNext() {return p != null;}@Overridepublic Integer next() {int k = p.value;p = p.next;return k;}};}//方法一: 循环复制public Linked reverseMethod1 (Linked linked) {Linked linked1 = new Linked();for (Integer integer : linked) {linked1.addFirst(integer);}return linked1;}//方法二: 改变旧节点的指向public Linked reverseMethod2(Linked linked) {Linked linkedNew = new Linked();Node handNew = linkedNew.hand;while (hand.next != null) {//先头删Node temp = linked.hand.next;linked.hand.next = temp.next;//再头插Node tp = handNew.next;handNew.next = temp;temp.next = tp;}return linkedNew;}//方法三: 递归public Linked reverseMethod3(Linked linked) {Linked linked1 = new Linked();linked1.hand.next = reversion(linked.hand.next);return linked1;}public Node reversion (Node node) {if (node == null || node.next == null) {return node;}Node last = reversion(node.next);node.next.next = node;node.next = null;return last;}//方法四:双引用public Linked reverseMethod4(Linked linked) {linked.hand.next = dualPointers(linked.hand.next);return linked;}public Node dualPointers(Node hand) {Node o1 = hand;Node n1 = hand;Node o2 = o1.next;while (o2 != null) {o1.next = o2.next;o2.next = n1;n1 = o2;o2 = o1.next;}return n1;}//方法五:public Linked reverseMethod5(Linked linked) {Node o1 = linked.hand.next;Linked linked1 = new Linked();Node n1 = null;while (o1 != null) {Node temp = o1.next;o1.next = n1;n1 = o1;o1 = temp;}linked1.hand.next = n1;return linked1;}}

 

相关文章:

Java 算法篇-深入了解单链表的反转(实现:用 5 种方式来具体实现)

&#x1f525;博客主页&#xff1a; 小扳_-CSDN博客 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 单链表的反转说明 2.0 单链表的创建 3.0 实现单链表反转的五种方法 3.1 实现单链表反转 - 循环复制&#xff08;迭代法&#xff09; 3.2 实现单链表反转 - 头插法 3…...

Android 10.0 系统内存优化之修改dalvik虚拟机的内存参数

1.前言 在10.0的系统开发定制中,app应用也是运行在dalvik虚拟机上的,所以对于一些内存低的系统中,在某些大应用会出现耗内存 卡顿情况,这是系统分配的内存不够大,在进行耗内存的操作,就会出现频繁gc等等原因造成不流畅的现象,接下来就分析下 虚拟机分配内存的相关原理 …...

Docker+K8s基础(重要知识点总结)

目录 一、Docker的核心1&#xff0c;Docker引擎2&#xff0c;Docker基础命令3&#xff0c;单个容器运行多个服务进程4&#xff0c;多个容器运行多个服务进程5&#xff0c;备份在容器中运行的数据库6&#xff0c;在宿主机和容器之间共享数据7&#xff0c;在容器之间共享数据8&am…...

IDEA 关闭SpringBoot启动Logo/图标

一、环境 1、SpringBoot 2.6.4 Maven POM格式 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.6.4</version><relativePath/></parent> 2、IDE…...

提供话费充值接口 话费快充慢充/API独立接口,商城/小程序/公众号合作

话费充值接口文档 接口版本&#xff1a;1.0 ―、引言 文档概述 本文档提供话费充值接口规范说明&#xff0c;提供一整套的完整的接入示例(http 接口)供商户参 考&#xff0c;可以帮助商户开发人员快速完成接口开发与联调&#xff0c;实现与话费充值系统的交易互联。 公司官网…...

[N-133]基于springboot,vue小说网站

开发工具&#xff1a;IDEA 服务器&#xff1a;Tomcat9.0&#xff0c; jdk1.8 项目构建&#xff1a;maven 数据库&#xff1a;mysql5.7 系统分前后台&#xff0c;项目采用前后端分离 前端技术&#xff1a;vueelementUI 服务端技术&#xff1a;springbootmybatis-plus 本项…...

计算机网络:概述

0 学时安排及讨论题目 0.1讨论题目&#xff1a; CSMA/CD协议交换机基本原理ARP协议及其安全子网划分IP分片路由选择算法网络地址转换NATTCP连接建立和释放再论网络体系结构 0.2 本节主要内容 计算机网络在信息时代中的作用 互联网概述 互联网的组成 计算机网络在我国的发展 …...

服务号怎么升级订阅号

服务号和订阅号有什么区别&#xff1f;服务号转为订阅号有哪些作用&#xff1f;首先我们要看一下服务号和订阅号的主要区别。1、服务号推送的消息没有折叠&#xff0c;消息出现在聊天列表中&#xff0c;会像收到消息一样有提醒。而订阅号推送的消息是折叠的&#xff0c;“订阅号…...

11.读取文件长度-fseek和ftell函数的使用

文章目录 简介1. 写入测试文件2. 读取文件长度 简介 主要讲使用fopen读取文件&#xff0c;配合使用fseek和ftell来读取文件长度。1. 写入测试文件 执行下方程序&#xff0c;使用fwrite函数写入40字节的数据&#xff0c;使其形成文件存入本地目录。#define _CRT_SECURE_NO_WARNI…...

视觉大模型DINOv2:自我监督学习的新领域

1 DINOv2 1.1 DINOv2特点 前段时间&#xff0c;Meta AI 高调发布了 Segment Anything&#xff08;SAM&#xff09;&#xff0c;SAM 以交互式方式快速生成 Mask&#xff0c;并可以对从未训练过的图片进行精准分割&#xff0c;可以根据文字提示或使用者点击进而圈出图像中的特定…...

Java事务详解

一、事务的理解&#xff1a; 1、事务的特性&#xff1a; 1) 原子性&#xff08;atomicity&#xff09;&#xff1a;事务是数据库的逻辑工作单位&#xff0c;而且是必须是原子工作单位&#xff0c;对于其数据修改&#xff0c;要么全部执行&#xff0c;要么全部不执行。 2) 一致性…...

el-table实现展开当前行时收起上一行的功能

<el-tableref"tableRef":data"tableData":expand-row-keys"expandRowKeys":row-key"handleRowKey" // 必须指定 row-keyexpand-change"handleExpandChange" // 当用户对某一行展开或者关闭的时候会触发该事件> <…...

Go的优雅退出

Go优雅退出/停机以前主要通过signal来实现&#xff0c;当然现在也是通过signal来实现&#xff0c;只是从go 1.16开始&#xff0c;新增了更加友好的API: func NotifyContext(parent context.Context, signals ...os.Signal) (ctx context.Context, stop context.CancelFunc) 该…...

【KVM-6】KVM/QEMU软件栈

前言 大家好&#xff0c;我是秋意零。 &#x1f47f; 简介 &#x1f3e0; 个人主页&#xff1a; 秋意零&#x1f525; 账号&#xff1a;全平台同名&#xff0c; 秋意零 账号创作者、 云社区 创建者&#x1f9d1; 个人介绍&#xff1a;在校期间参与众多云计算相关比赛&#x…...

硬件知识2

原理图的检查&#xff1a; 网络悬浮 单端网络 电源悬浮&#xff08;电源和地&#xff09; 重复的位号 网络短路&#xff08;电源和地&#xff09; AD里面双击messages里面的错误项会直接进入到原理图和PCB…...

【Java 进阶篇】JQuery DOM操作:通用属性操作的绝妙魔法

在前端的舞台上&#xff0c;JQuery犹如一位魔法师&#xff0c;为我们展现了操纵HTML元素的奇妙技巧。而在这个技巧的精妙组成中&#xff0c;通用属性操作是一门绝妙的魔法。在本篇博客中&#xff0c;我们将深入研究JQuery DOM操作中的通用属性操作&#xff0c;揭示这段魔法的神…...

在任何机器人上实施 ROS 导航堆栈的指南

文章目录 路径规划参考 路径规划 路径规划是导航的最终目标。这允许用户向机器人给出目标姿势&#xff0c;并让它在给定的环境中自主地从当前位置导航到目标位置。这是我们迄今为止所做的一切&#xff08;地图绘制和本地化&#xff09;的汇集点。ROS 导航堆栈已经为我们完成了…...

Android 中注解的使用

Android Support Library 从 19.1 版本开始引入了一个新的注解库&#xff0c;其中包含了很多的元注解&#xff0c;使用它们修饰我们的代码&#xff0c; 可以让我们提高程序的开发效率&#xff0c;让我们更早的发现问题。以及对代码施以规范&#xff0c;让代码更加有可读性。这篇…...

我国陆地遥感卫星发展现状与展望

一、引言 从20世纪90年代末至今&#xff0c;我国陆地遥感卫星事业历经二十多年&#xff0c;实现了从无到有、从小到大、从弱到强的跨越发展。随着高分辨率对地观测系统重大专项&#xff08;高分专项&#xff09;、《陆海观测卫星业务发展规划&#xff08;2011—2020年&#xff…...

arcgis基础篇--实验

一、绘制带空洞的面要素 方法一&#xff1a;先绘制出一个面区域&#xff0c;然后在面上再绘制一个面区域代表面洞&#xff0c;两者位于同一个图层内&#xff0c;选中代表面洞的区域&#xff0c;选择【编辑器】-【裁剪】工具&#xff0c;将面裁剪出一个洞&#xff0c;随后删除代…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...