当前位置: 首页 > news >正文

OpenGL_Learn10(颜色)

1. 颜色

我们在现实生活中看到某一物体的颜色并不是这个物体真正拥有的颜色,而是它所反射的(Reflected)颜色。换句话说,那些不能被物体所吸收(Absorb)的颜色(被拒绝的颜色)就是我们能够感知到的物体的颜色。例如,太阳光能被看见的白光其实是由许多不同的颜色组合而成的(如下图所示)。如果我们将白光照在一个蓝色的玩具上,这个蓝色的玩具会吸收白光中除了蓝色以外的所有子颜色,不被吸收的蓝色光被反射到我们的眼中,让这个玩具看起来是蓝色的。下图显示的是一个珊瑚红的玩具,它以不同强度反射了多个颜色。

 

我们将这两个颜色向量作分量相乘,结果就是最终的颜色向量了:

glm::vec3 lightColor(1.0f, 1.0f, 1.0f);
glm::vec3 toyColor(1.0f, 0.5f, 0.31f);
glm::vec3 result = lightColor * toyColor; // = (1.0f, 0.5f, 0.31f);

我们可以看到玩具的颜色吸收了白色光源中很大一部分的颜色,但它根据自身的颜色值对红、绿、蓝三个分量都做出了一定的反射。这也表现了现实中颜色的工作原理。由此,我们可以定义物体的颜色为物体从一个光源反射各个颜色分量的大小。现在,如果我们使用绿色的光源又会发生什么呢?

glm::vec3 lightColor(0.0f, 1.0f, 0.0f);
glm::vec3 toyColor(1.0f, 0.5f, 0.31f);
glm::vec3 result = lightColor * toyColor; // = (0.0f, 0.5f, 0.0f);

2. 创造一个光照场景

场景中有两个东西,一个是物体,一个是光源。

物体就是大正方体,是红色的。

光源点就是小正方体,是白色的。

因此我们需要两个顶点着色器和片段。

 light_cube.vs

一个标准的三矩阵确定位置

#version 330 core
layout (location = 0) in vec3 aPos;uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;void main()
{gl_Position = projection * view * model * vec4(aPos, 1.0);
}

ligtht_cube.fs

光源的片段着色器,默认都是白色

#version 330 core
out vec4 FragColor;void main()
{FragColor = vec4(1.0); // set all 4 vector values to 1.0
}

cube.vs

被照射的物体,也是标准的三矩阵确定位置

#version 330 core
layout (location = 0) in vec3 aPos;uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;void main()
{gl_Position = projection * view * model * vec4(aPos, 1.0);
}

 cube.fs

我们看到的物体颜色=光的颜色*物体本身的颜色

#version 330 core
out vec4 FragColor;uniform vec3 objectColor;
uniform vec3 lightColor;void main()
{FragColor = vec4(lightColor * objectColor, 1.0);
}

main.cpp

#include <glad/glad.h>
#include <GLFW/glfw3.h>#include <iostream>
#include "stb_image.h"
#include <cmath>
#include "shader.h"
#include "camera.h"#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow* window);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);// settings
const unsigned int SCR_WIDTH = 1800;
const unsigned int SCR_HEIGHT = 1200;//camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = SCR_WIDTH / 2.0f;
float lastY = SCR_HEIGHT / 2.0f;
bool firstMouse = true;//timing
float deltaTime = 0.0f;//不同配置绘制速度不同,所以需要这个属性
float lastFrame = 0.0f;//lighting
glm::vec3 lightPos(1.2f, 1.0f, 2.0f);int main() {//glfw:initialize and configure//=============================glfwInit();glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);#ifdef __APPLE__glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif//glfw window creation//=============================GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "Learn", NULL, NULL);if (window == NULL) {std::cout << "Failed to create GLFW window" << std::endl;glfwTerminate();return -1;}glfwMakeContextCurrent(window);glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);glfwSetCursorPosCallback(window, mouse_callback);glfwSetScrollCallback(window, scroll_callback);//tell GLFW to capture our mouseglfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);//glad::load all OPenGL function pointers//=============================if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) {std::cout << "Failed to initialize GLAD" << std::endl;return -1;}//configure gloabl opengl state//=============================glEnable(GL_DEPTH_TEST);//build and compile our shader zprogram//=============================Shader lightingShader("./cube.vs", "./cube.fs");Shader lightingCubeShader("./light_cube.vs", "./light_cube.fs");//set up vertex data float vertices[] = {-0.5f, -0.5f, -0.5f,0.5f, -0.5f, -0.5f,0.5f,  0.5f, -0.5f,0.5f,  0.5f, -0.5f,-0.5f,  0.5f, -0.5f,-0.5f, -0.5f, -0.5f,-0.5f, -0.5f,  0.5f,0.5f, -0.5f,  0.5f,0.5f,  0.5f,  0.5f,0.5f,  0.5f,  0.5f,-0.5f,  0.5f,  0.5f,-0.5f, -0.5f,  0.5f,-0.5f,  0.5f,  0.5f,-0.5f,  0.5f, -0.5f,-0.5f, -0.5f, -0.5f,-0.5f, -0.5f, -0.5f,-0.5f, -0.5f,  0.5f,-0.5f,  0.5f,  0.5f,0.5f,  0.5f,  0.5f,0.5f,  0.5f, -0.5f,0.5f, -0.5f, -0.5f,0.5f, -0.5f, -0.5f,0.5f, -0.5f,  0.5f,0.5f,  0.5f,  0.5f,-0.5f, -0.5f, -0.5f,0.5f, -0.5f, -0.5f,0.5f, -0.5f,  0.5f,0.5f, -0.5f,  0.5f,-0.5f, -0.5f,  0.5f,-0.5f, -0.5f, -0.5f,-0.5f,  0.5f, -0.5f,0.5f,  0.5f, -0.5f,0.5f,  0.5f,  0.5f,0.5f,  0.5f,  0.5f,-0.5f,  0.5f,  0.5f,-0.5f,  0.5f, -0.5f,};//第一个unsigned int VBO, cubeVAO;glGenVertexArrays(1, &cubeVAO);glGenBuffers(1, &VBO);glBindBuffer(GL_ARRAY_BUFFER, VBO);glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);glBindVertexArray(cubeVAO);//position attributeglVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);glEnableVertexAttribArray(0);//第二个unsigned int lightCubeVAO;glGenVertexArrays(1, &lightCubeVAO);glBindVertexArray(lightCubeVAO);glBindBuffer(GL_ARRAY_BUFFER, VBO);glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);glEnableVertexAttribArray(0);//reader loopwhile (!glfwWindowShouldClose(window)) {//per-frame time logicfloat currentFrame = static_cast<float>(glfwGetTime());deltaTime = currentFrame - lastFrame;lastFrame = currentFrame;//inputprocessInput(window);//renderglClearColor(0.2f, 0.3f, 0.3f, 1.0f);glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);//lightingShader.use();lightingShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f);lightingShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);// view/projection transformationsglm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);glm::mat4 view = camera.GetViewMatrix();lightingShader.setMat4("projection", projection);lightingShader.setMat4("view", view);// world transformationglm::mat4 model = glm::mat4(1.0f);lightingShader.setMat4("model", model);//render the cubeglBindVertexArray(cubeVAO);glDrawArrays(GL_TRIANGLES, 0, 36);//lightingCubeShader.use();lightingCubeShader.setMat4("projection", projection);lightingCubeShader.setMat4("view", view);model = glm::mat4(1.0f);model = glm::translate(model, lightPos);model = glm::scale(model, glm::vec3(0.2f));lightingCubeShader.setMat4("model", model);glBindVertexArray(lightCubeVAO);glDrawArrays(GL_TRIANGLES, 0, 36);glfwSwapBuffers(window);glfwPollEvents();}glDeleteVertexArrays(1, &cubeVAO);glDeleteVertexArrays(1, &lightCubeVAO);glDeleteBuffers(1, &VBO);glfwTerminate();return 0;}
void processInput(GLFWwindow* window)
{if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)glfwSetWindowShouldClose(window, true);if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)camera.ProcessKeyboard(FORWARD, deltaTime);if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)camera.ProcessKeyboard(BACKWARD, deltaTime);if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)camera.ProcessKeyboard(LEFT, deltaTime);if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)camera.ProcessKeyboard(RIGHT, deltaTime);
}void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{// make sure the viewport matches the new window dimensions; note that width and // height will be significantly larger than specified on retina displays.glViewport(0, 0, width, height);
}
// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
{float xpos = static_cast<float>(xposIn);float ypos = static_cast<float>(yposIn);if (firstMouse){lastX = xpos;lastY = ypos;firstMouse = false;}float xoffset = xpos - lastX;float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to toplastX = xpos;lastY = ypos;camera.ProcessMouseMovement(xoffset, yoffset);
}// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{camera.ProcessMouseScroll(static_cast<float>(yoffset));
}

颜色 - LearnOpenGL CN (learnopengl-cn.github.io)

 

相关文章:

OpenGL_Learn10(颜色)

1. 颜色 我们在现实生活中看到某一物体的颜色并不是这个物体真正拥有的颜色&#xff0c;而是它所反射的(Reflected)颜色。换句话说&#xff0c;那些不能被物体所吸收(Absorb)的颜色&#xff08;被拒绝的颜色&#xff09;就是我们能够感知到的物体的颜色。例如&#xff0c;太阳光…...

使用Go语言抓取酒店价格数据的技术实现

目录 一、引言 二、准备工作 三、抓取数据 四、数据处理与存储 五、数据分析与可视化 六、结论与展望 一、引言 随着互联网的快速发展&#xff0c;酒店预订已经成为人们出行的重要环节。在选择酒店时&#xff0c;价格是消费者考虑的重要因素之一。因此&#xff0c;抓取酒…...

设计模式1

![在这里插入图片描述](https://img-blog.csdnimg.cn/c9fbecf1ae89436095885722380ea460.png)一、设计模式分类&#xff1a; 1、创建型模式&#xff1a;创建与使用分离&#xff0c;单例、原型、工厂、抽象、建造者。 2、结构型模式&#xff1a;用于描述如何将对象按某种更大的…...

数字人部署之VITS+Wav2lip数据流转处理问题

一、模型 VITS模型训练教程VITS-从零开始微调&#xff08;finetune&#xff09;训练并部署指南-支持本地云端 Wav2lip是2D数字人&#xff0c;可参考训练嘴型同步模型Wav2Lip PS:以上模型都是开源可用。 二. VITS数据处理问题 VITS模型的输出为一维的numpy类型数据&#xff…...

RK3568笔记五:基于Yolov5的训练及部署

若该文为原创文章&#xff0c;转载请注明原文出处。 一. 部署概述 环境&#xff1a;Ubuntu20.04、python3.8 芯片&#xff1a;RK3568 芯片系统&#xff1a;buildroot 开发板&#xff1a;ATK-DLRK3568 开发主要参考文档&#xff1a;《Rockchip_Quick_Start_RKNN_Toolkit2_C…...

VR虚拟现实:VR技术如何进行原型制作

VR虚拟现实原型制作 利用VR虚拟现实软件进行原型制作可以用于增强原型测试期间的沉浸感&#xff0c;减少产品设计迭代次数&#xff0c;并将与产品原型制作相关的成本降低40-65%。 VR虚拟现实原型制作市场规模 用于原型制作的虚拟现实 (VR) 市场在 2017 年估计为 2.104 亿美元…...

51单片机入门

一、单片机以及开发板介绍 写在前面&#xff1a;本文为作者自学笔记&#xff0c;课程为哔哩哔哩江协科技51单片机入门教程&#xff0c;感兴趣可以看看&#xff0c;适合普中A2开发板或者HC6800-ESV2.0江协科技课程所用开发板。 工具安装请另行搜索&#xff0c;这里不做介绍&…...

notes_质谱蛋白组学数据分析基础知识

目录 1. 蛋白组学方法学1.1 液相-质谱法1) 基本原理2) bottom-up策略的基本流程 1.2 PEA/Olink 2. 质谱数据分析2.1 原始数据格式2.2 分析过程1&#xff09;鉴定搜索引擎&#xff08;质谱组学&#xff09;重难点/潜在的研究方向 2&#xff09;定量3&#xff09;预处理 2.3 下游…...

【Python基础】一个简单的TCP通信程序

&#x1f308;欢迎来到Python专栏 &#x1f64b;&#x1f3fe;‍♀️作者介绍&#xff1a;前PLA队员 目前是一名普通本科大三的软件工程专业学生 &#x1f30f;IP坐标&#xff1a;湖北武汉 &#x1f349; 目前技术栈&#xff1a;C/C、Linux系统编程、计算机网络、数据结构、Mys…...

算法之双指针

双指针算法的作用 双指针算法是一种使用2个变量对线性结构(逻辑线性/物理线性)&#xff0c;进行操作的算法&#xff0c;双指针可以对线性结构进行时间复杂度优化&#xff0c;可以对空间进行记忆或达到某种目的。 双指针算法的分类 1.快慢指针 2.滑动窗口 3.左右指针 4.前后指…...

Redis被攻击纪实

一、前言 声明&#xff1a;本文仅供技术交流使用&#xff0c;严禁采用本文的方法进行任何非法活动。 上周新来的同事分享Redis的原理和机制&#xff0c;想起2017年的时候测试环境Redis被攻击&#xff0c;最后只能重新安装服务器&#xff0c;今天试验一把利用Redis漏洞进行攻击…...

AI工具-PPT-SlidesAI

SlidesAI 使用手册 https://tella.video/get-started-with-slidesai-tutorial-18yq 简介 SlidesAI 是一款快速创建演示文稿的AI工具&#xff0c;适用于无设计经验的用户。 开始使用 1. **安装与设置** - 访问 [SlidesAI官网](https://www.slidesai.io/zh)。 - 完成简单的设置…...

原型链污染攻击

想要很清楚了理解原型链污染我们首先必须要弄清楚原型链这个概念 可以看这篇文章&#xff1a;对象的继承和原型链 目录 prototype和__proto__分别是什么&#xff1f; 原型链继承 原型链污染是什么 哪些情况下原型链会被污染&#xff1f; 例题1&#xff1a;Code-Breaking 2…...

Android Glide transform圆形图CircleCrop动态代码描边绘制外框线并rotateImage旋转,Kotlin

Android Glide transform圆形图CircleCrop动态代码描边绘制外框线并rotateImage旋转&#xff0c;Kotlin <?xml version"1.0" encoding"utf-8"?> <FrameLayout xmlns:android"http://schemas.android.com/apk/res/android"xmlns:app&q…...

【ruoyi】微服务关闭登录验证码

登录本地的nacos服务&#xff0c;修改&#xff1a;配置管理-配置列表-ruoyi-gateway-dev.yml 将验证码的enabled设置成false&#xff0c;即可...

AI:78-基于深度学习的食物识别与营养分析

🚀 本文选自专栏:人工智能领域200例教程专栏 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 ✨✨✨ 每一个案例都附带有在本地跑过的代码,详细讲解供大家学习,希望可以帮到大家。欢迎订阅支持,正在不断更新中,…...

日本it培训班,如何选择靠谱的赴日IT培训班?

随着科技的发展&#xff0c;信息技术行业在全球范围内迅速发展&#xff0c;并呈现出蓬勃的发展态势&#xff0c;在日本&#xff0c;IT行业也成为一种极为热门的职业选择。日本专门学校在这个领域内培养了许多IT从业者&#xff0c;成为了众多IT公司的培养基地。如果你对IT产业感…...

51单片机PCF8591数字电压表LCD1602液晶显示设计( proteus仿真+程序+设计报告+讲解视频)

51单片机PCF8591数字电压表LCD1602液晶设计 ( proteus仿真程序设计报告讲解视频&#xff09; 仿真图proteus7.8及以上 程序编译器&#xff1a;keil 4/keil 5 编程语言&#xff1a;C语言 设计编号&#xff1a;S0060 51单片机PCF8591数字电压表LCD1602液晶设计 1.主要功能&a…...

缅因州政府通知130万人MOVEit数据泄露事件

大家好&#xff0c;今天我要向大家通报一个令人震惊的消息&#xff1a;缅因州政府的系统遭到了入侵&#xff0c;黑客利用MOVEit文件传输工具的漏洞&#xff0c;获取了约130万人的个人信息&#xff0c;这几乎相当于该州的整个人口数量。 MOVEit攻击是Clop勒索软件团伙进行的一次…...

4.2 onnx简化模型结构

前言 对已有的onnx结构&#xff0c;进行简化操作&#xff0c;onnx提供两种常规操作 方式一 假设为 model.onnx, 比较简单粗暴 # 简化 onnxsim model.onnx model_sim.onnx方式二 稍微复杂点&#xff0c;代码有点多 import onnx import argparse from onnxsim import simpl…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

Docker拉取MySQL后数据库连接失败的解决方案

在使用Docker部署MySQL时&#xff0c;拉取并启动容器后&#xff0c;有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致&#xff0c;包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因&#xff0c;并提供解决方案。 一、确认MySQL容器的运行状态 …...

uni-app学习笔记三十五--扩展组件的安装和使用

由于内置组件不能满足日常开发需要&#xff0c;uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件&#xff0c;需要安装才能使用。 一、安装扩展插件 安装方法&#xff1a; 1.访问uniapp官方文档组件部分&#xff1a;组件使用的入门教程 | uni-app官网 点击左侧…...

鸿蒙HarmonyOS 5军旗小游戏实现指南

1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;采用DevEco Studio实现&#xff0c;包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...

Java并发编程实战 Day 11:并发设计模式

【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天&#xff0c;今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案&#xff0c;它们不仅提供了优雅的设计思路&#xff0c;还能显著提升系统的性能…...

渗透实战PortSwigger Labs指南:自定义标签XSS和SVG XSS利用

阻止除自定义标签之外的所有标签 先输入一些标签测试&#xff0c;说是全部标签都被禁了 除了自定义的 自定义<my-tag onmouseoveralert(xss)> <my-tag idx onfocusalert(document.cookie) tabindex1> onfocus 当元素获得焦点时&#xff08;如通过点击或键盘导航&…...

java+webstock

maven依赖 <dependency><groupId>org.java-websocket</groupId><artifactId>Java-WebSocket</artifactId><version>1.3.5</version></dependency><dependency><groupId>org.apache.tomcat.websocket</groupId&…...