Flink SQL 表值聚合函数(Table Aggregate Function)详解
使用场景: 表值聚合函数即 UDTAF,这个函数⽬前只能在 Table API 中使⽤,不能在 SQL API 中使⽤。
函数功能:
在 SQL 表达式中,如果想对数据先分组再进⾏聚合取值:
select max(xxx) from source_table group by key1, key2
上⾯ SQL 的 max 语义产出只有⼀条最终结果,如果想取聚合结果最⼤的 n 条数据,并且 n 条数据,每⼀条都要输出⼀次结果数据,上⾯的 SQL 就没有办法实现了。
所以 UDTAF 为了处理这种场景,可以⾃定义 怎么取 , 取多少条 最终的聚合结果,UDTAF 和 UDAF 是类似的。

案例场景: 有⼀个饮料表有 3 列,分别是 id、name 和 price,⼀共有 5 ⾏,需要找到价格最⾼的两个饮料,类似于 top2,表值聚合函数,需要遍历所有 5 ⾏数据,输出结果为 2 ⾏数据的⼀个表。
开发流程:
实现 TableAggregateFunction 接⼝,其中所有的⽅法必须是 public 的、⾮ static 的
必须实现以下⽅法:
Acc聚合中间结果 createAccumulator() : 为当前 Key 初始化⼀个空的 accumulator,存储了聚合的中间结果,⽐如在执⾏ max() 时会存储每⼀条中间结果的 max 值;
accumulate(Acc accumulator, Input输⼊参数) : 每⼀⾏数据,都会调⽤ accumulate() ⽅法更新 accumulator,⽅法对每⼀条输⼊数据执⾏,⽐如执⾏ max() 时,遍历每⼀条数据执⾏;这个⽅法必须声明为 public 和⾮ static 的,accumulate ⽅法可以重载,每个⽅法的参数类型可以不同,⽀持变⻓参数。
emitValue(Acc accumulator, Collector collector) 或者 emitUpdateWithRetract(Acc accumulator, RetractableCollector collector) :
当所有的数据处理完之后,调⽤ emit ⽅法来计算和输出最终结果,可以⾃定义输出多少条以及怎样输出结果。
对于 emitValue 以及 emitUpdateWithRetract 区别,以 TopN 举例,emitValue 每次都会发送所有的最⼤的 n 个值,⽽这在流式任务中会有性能问题,为提升性能,可以实现 emitUpdateWithRetract ⽅法,这个⽅法在 retract 模式下会增量输出结果,⽐如只在有数据更新时,做到撤回⽼数据,再发送新数据,⽽不需要每次都发出全量的最新数据。
如果同时定义了 emitUpdateWithRetract、emitValue ⽅法,那 emitUpdateWithRetract 会优先于 emitValue ⽅法被使⽤,因为引擎会认为 emitUpdateWithRetract 会更加⾼效,它的输出是增量的。
某些场景下必须实现:
- retract(Acc accumulator, Input输⼊参数) : 回撤流的场景必须实现,在计算回撤数据时调⽤,如果没有实现则会直接报错。
- merge(Acc accumulator, Iterable it) : 在批式聚合以及流式聚合中的 Session、Hop 窗⼝聚合场景必须实现,这个⽅法对优化也有帮助,例如,打开了两阶段聚合优化,需要 AggregateFunction 实现 merge ⽅法,从⽽在第⼀阶段先进⾏数据聚合。
- resetAccumulator() : 在批式聚合中是必须实现的。
关于⼊参、出参数据类型:
默认情况下,⽤户的 Input输⼊参数( accumulate(Acc accumulator, Input输⼊参数) 的⼊参 Input输⼊参数 )、accumulator( Acc聚 合中间结果 createAccumulator() 的返回结果)、 Output输出参数 数据类型( emitValue(Acc acc,Collector<Output输出参数> out) 的 Output输出参数 )会被 Flink 反射获取,但对于accumulator 和 Output输出参数类型来说,Flink SQL 的类型推导在遇到复杂类型的时候可能会推导出错误的结果(注意: Input输⼊参数 因为是上游算⼦传⼊的,所以类型信息是确认的,不会出现推导错误的情况),⽐如那些⾮基本类型 POJO 的复杂类型,所以跟 ScalarFunction 和 TableFunction ⼀样, AggregateFunction 提供了TableAggregateFunction#getResultType() 和 TableAggregateFunction#getAccumulatorType() 来分别指定最终返回值类型和accumulator 的类型,两个函数的返回值类型都是 TypeInformation。
- getResultType() : 即 emitValue(Acc acc, Collector<Output输出参数> out) 的输出结果数据类型;
- getAccumulatorType() : 即 Acc聚合中间结果 createAccumulator() 的返回结果数据类型;
案例场景: Top2
定义⼀个 TableAggregateFunction 来计算给定列的最⼤的 2 个值
在 TableEnvironment 中注册函数
在 Table API 查询中使⽤函数(当前只在 Table API 中⽀持 TableAggregateFunction)
实现思路:
计算最⼤的 2 个值,accumulator 需要保存当前的最⼤的 2 个值,定义了类 Top2Accum 作为 accumulator,Flink 的 checkpoint 机制会⾃动保存 accumulator,在失败时进⾏恢复,来保证精确⼀次的语义。
Top2 表值聚合函数(TableAggregateFunction)的 accumulate() ⽅法有两个输⼊,第⼀个是 Top2Accum accumulator,另⼀个是⽤户定义的输⼊:输⼊的值 v,尽管 merge() ⽅法在⼤多数聚合类型中不是必须的,但在样例中提供了它的实现。并且定义了 getResultType() 和 getAccumulatorType() ⽅法。
代码案例:
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TableAggregateFunction;
import org.apache.flink.util.Collector;/*** 输入数据:* a,1* a,2* a,3* * 输出结果:* res=>:1> +I[a, 1, 1]* res=>:1> -D[a, 1, 1]* res=>:1> +I[a, 2, 1]* res=>:1> +I[a, 1, 2]* res=>:1> -D[a, 2, 1]* res=>:1> -D[a, 1, 2]* res=>:1> +I[a, 3, 1]* res=>:1> +I[a, 2, 2]*/
public class TableAggregateFunctionTest {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();EnvironmentSettings settings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, settings);DataStreamSource<String> source = env.socketTextStream("localhost", 8888);SingleOutputStreamOperator<Tuple2<String,Integer>> tpStream = source.map(new MapFunction<String, Tuple2<String,Integer>>() {@Overridepublic Tuple2<String,Integer> map(String input) throws Exception {return new Tuple2<>(input.split(",")[0],Integer.parseInt(input.split(",")[1]));}});tEnv.registerFunction("top2", new Top2());Table table = tEnv.fromDataStream(tpStream, "key,value");tEnv.createTemporaryView("SourceTable", table);// 使⽤函数Table res = tEnv.from("SourceTable").groupBy("key").flatAggregate("top2(value) as (v, rank)").select("key, v, rank");tEnv.toChangelogStream(res).print("res=>");env.execute();}/*** Accumulator for Top2.*/public static class Top2Accum {public Integer first;public Integer second;}public static class Top2 extends TableAggregateFunction<Tuple2<Integer, Integer>, Top2Accum> {@Overridepublic Top2Accum createAccumulator() {Top2Accum acc = new Top2Accum();acc.first = Integer.MIN_VALUE;acc.second = Integer.MIN_VALUE;return acc;}public void accumulate(Top2Accum acc, Integer v) {if (v > acc.first) {acc.second = acc.first;acc.first = v;} else if (v > acc.second) {acc.second = v;}}public void merge(Top2Accum acc, java.lang.Iterable<Top2Accum> iterable) {for (Top2Accum otherAcc : iterable) {accumulate(acc, otherAcc.first);accumulate(acc, otherAcc.second);}}public void emitValue(Top2Accum acc, Collector<Tuple2<Integer, Integer>> out) {// emit the value and rankif (acc.first != Integer.MIN_VALUE) {out.collect(Tuple2.of(acc.first, 1));}if (acc.second != Integer.MIN_VALUE) {out.collect(Tuple2.of(acc.second, 2));}}}
}
测试结果:

相关文章:
Flink SQL 表值聚合函数(Table Aggregate Function)详解
使用场景: 表值聚合函数即 UDTAF,这个函数⽬前只能在 Table API 中使⽤,不能在 SQL API 中使⽤。 函数功能: 在 SQL 表达式中,如果想对数据先分组再进⾏聚合取值: select max(xxx) from source_table gr…...
pgsql_全文检索_使用空间换时间的方法支持中文搜索
pgsql_全文检索_使用空间换时间的方法支持中文搜索 一、环境 PostgreSQL 14.2, compiled by Visual C build 1914, 64-bit 二、引言 提到全文检索首先想到的就是ES(ElasticSearch)和Lucene,专业且强大。对于一些小众场景对于搜索要求不高,数据量也不…...
OpenGL_Learn10(颜色)
1. 颜色 我们在现实生活中看到某一物体的颜色并不是这个物体真正拥有的颜色,而是它所反射的(Reflected)颜色。换句话说,那些不能被物体所吸收(Absorb)的颜色(被拒绝的颜色)就是我们能够感知到的物体的颜色。例如,太阳光…...
使用Go语言抓取酒店价格数据的技术实现
目录 一、引言 二、准备工作 三、抓取数据 四、数据处理与存储 五、数据分析与可视化 六、结论与展望 一、引言 随着互联网的快速发展,酒店预订已经成为人们出行的重要环节。在选择酒店时,价格是消费者考虑的重要因素之一。因此,抓取酒…...
设计模式1
一、设计模式分类: 1、创建型模式:创建与使用分离,单例、原型、工厂、抽象、建造者。 2、结构型模式:用于描述如何将对象按某种更大的…...
数字人部署之VITS+Wav2lip数据流转处理问题
一、模型 VITS模型训练教程VITS-从零开始微调(finetune)训练并部署指南-支持本地云端 Wav2lip是2D数字人,可参考训练嘴型同步模型Wav2Lip PS:以上模型都是开源可用。 二. VITS数据处理问题 VITS模型的输出为一维的numpy类型数据ÿ…...
RK3568笔记五:基于Yolov5的训练及部署
若该文为原创文章,转载请注明原文出处。 一. 部署概述 环境:Ubuntu20.04、python3.8 芯片:RK3568 芯片系统:buildroot 开发板:ATK-DLRK3568 开发主要参考文档:《Rockchip_Quick_Start_RKNN_Toolkit2_C…...
VR虚拟现实:VR技术如何进行原型制作
VR虚拟现实原型制作 利用VR虚拟现实软件进行原型制作可以用于增强原型测试期间的沉浸感,减少产品设计迭代次数,并将与产品原型制作相关的成本降低40-65%。 VR虚拟现实原型制作市场规模 用于原型制作的虚拟现实 (VR) 市场在 2017 年估计为 2.104 亿美元…...
51单片机入门
一、单片机以及开发板介绍 写在前面:本文为作者自学笔记,课程为哔哩哔哩江协科技51单片机入门教程,感兴趣可以看看,适合普中A2开发板或者HC6800-ESV2.0江协科技课程所用开发板。 工具安装请另行搜索,这里不做介绍&…...
notes_质谱蛋白组学数据分析基础知识
目录 1. 蛋白组学方法学1.1 液相-质谱法1) 基本原理2) bottom-up策略的基本流程 1.2 PEA/Olink 2. 质谱数据分析2.1 原始数据格式2.2 分析过程1)鉴定搜索引擎(质谱组学)重难点/潜在的研究方向 2)定量3)预处理 2.3 下游…...
【Python基础】一个简单的TCP通信程序
🌈欢迎来到Python专栏 🙋🏾♀️作者介绍:前PLA队员 目前是一名普通本科大三的软件工程专业学生 🌏IP坐标:湖北武汉 🍉 目前技术栈:C/C、Linux系统编程、计算机网络、数据结构、Mys…...
算法之双指针
双指针算法的作用 双指针算法是一种使用2个变量对线性结构(逻辑线性/物理线性),进行操作的算法,双指针可以对线性结构进行时间复杂度优化,可以对空间进行记忆或达到某种目的。 双指针算法的分类 1.快慢指针 2.滑动窗口 3.左右指针 4.前后指…...
Redis被攻击纪实
一、前言 声明:本文仅供技术交流使用,严禁采用本文的方法进行任何非法活动。 上周新来的同事分享Redis的原理和机制,想起2017年的时候测试环境Redis被攻击,最后只能重新安装服务器,今天试验一把利用Redis漏洞进行攻击…...
AI工具-PPT-SlidesAI
SlidesAI 使用手册 https://tella.video/get-started-with-slidesai-tutorial-18yq 简介 SlidesAI 是一款快速创建演示文稿的AI工具,适用于无设计经验的用户。 开始使用 1. **安装与设置** - 访问 [SlidesAI官网](https://www.slidesai.io/zh)。 - 完成简单的设置…...
原型链污染攻击
想要很清楚了理解原型链污染我们首先必须要弄清楚原型链这个概念 可以看这篇文章:对象的继承和原型链 目录 prototype和__proto__分别是什么? 原型链继承 原型链污染是什么 哪些情况下原型链会被污染? 例题1:Code-Breaking 2…...
Android Glide transform圆形图CircleCrop动态代码描边绘制外框线并rotateImage旋转,Kotlin
Android Glide transform圆形图CircleCrop动态代码描边绘制外框线并rotateImage旋转,Kotlin <?xml version"1.0" encoding"utf-8"?> <FrameLayout xmlns:android"http://schemas.android.com/apk/res/android"xmlns:app&q…...
【ruoyi】微服务关闭登录验证码
登录本地的nacos服务,修改:配置管理-配置列表-ruoyi-gateway-dev.yml 将验证码的enabled设置成false,即可...
AI:78-基于深度学习的食物识别与营养分析
🚀 本文选自专栏:人工智能领域200例教程专栏 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 ✨✨✨ 每一个案例都附带有在本地跑过的代码,详细讲解供大家学习,希望可以帮到大家。欢迎订阅支持,正在不断更新中,…...
日本it培训班,如何选择靠谱的赴日IT培训班?
随着科技的发展,信息技术行业在全球范围内迅速发展,并呈现出蓬勃的发展态势,在日本,IT行业也成为一种极为热门的职业选择。日本专门学校在这个领域内培养了许多IT从业者,成为了众多IT公司的培养基地。如果你对IT产业感…...
51单片机PCF8591数字电压表LCD1602液晶显示设计( proteus仿真+程序+设计报告+讲解视频)
51单片机PCF8591数字电压表LCD1602液晶设计 ( proteus仿真程序设计报告讲解视频) 仿真图proteus7.8及以上 程序编译器:keil 4/keil 5 编程语言:C语言 设计编号:S0060 51单片机PCF8591数字电压表LCD1602液晶设计 1.主要功能&a…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...
