当前位置: 首页 > news >正文

图论14-最短路径-Dijkstra算法+Bellman-Ford算法+Floyed算法

文章目录

  • 0 代码仓库
  • 1 Dijkstra算法
  • 2 Dijkstra算法的实现
    • 2.1 设置距离数组
    • 2.2 找到当前路径的最小值 curdis,及对应的该顶点cur
    • 2.3 更新权重
    • 2.4 其他接口
      • 2.4.1 判断某个顶点的连通性
      • 2.4.2 求源点s到某个顶点的最短路径
  • 3使用优先队列优化-Dijkstra算法
    • 3.1 设计内部类node
    • 3.2 入队
    • 3.3 记录路径
    • 3.4 整体
  • 4 Bellman-Ford算法
    • 4.1 松弛操作
    • 4.2 负权环
    • 4.3 算法思想
    • 4.4 进行V-1次松弛操作
    • 4.5 判断负权环
    • 4.6 整体
  • 5 Floyed算法
    • 5.1 设置记录两点最短距离的数组,并初始化两点之间的距离
    • 5.2 更新两点之间的距离

0 代码仓库

https://github.com/Chufeng-Jiang/Graph-Theory/tree/main/src/Chapter11_Min_Path

1 Dijkstra算法

在这里插入图片描述

2 Dijkstra算法的实现

2.1 设置距离数组

//用于存储从源点到当前节点的距离,并初始化
dis = new int[G.V()];
Arrays.fill(dis, Integer.MAX_VALUE);
dis[s] = 0;

2.2 找到当前路径的最小值 curdis,及对应的该顶点cur

int cur = -1, curdis = Integer.MAX_VALUE;for(int v = 0; v < G.V(); v ++)if(!visited[v] && dis[v] < curdis){curdis = dis[v];cur = v;}

2.3 更新权重

visited[cur] = true;
for(int w: G.adj(cur))if(!visited[w]){if(dis[cur] + G.getWeight(cur, w) < dis[w])dis[w] = dis[cur] + G.getWeight(cur, w);}

2.4 其他接口

2.4.1 判断某个顶点的连通性

public boolean isConnectedTo(int v){G.validateVertex(v);return visited[v];
}

2.4.2 求源点s到某个顶点的最短路径

public int distTo(int v){G.validateVertex(v);return dis[v];
}

在这里插入图片描述

3使用优先队列优化-Dijkstra算法

3.1 设计内部类node

存放节点编号和距离

    private class Node implements Comparable<Node>{public int v, dis;public Node(int v, int dis){this.v = v;this.dis = dis;}@Overridepublic int compareTo(Node another){return dis - another.dis;}}

3.2 入队

PriorityQueue<Node> pq = new PriorityQueue<Node>();pq.add(new Node(s, 0));

这里的缺点就是,更新node时候,会重复添加节点相同的node,但是路径值不一样。不影响最后结果。

while(!pq.isEmpty()){int cur = pq.remove().v;if(visited[cur]) continue;visited[cur] = true;for(int w: G.adj(cur))if(!visited[w]){if(dis[cur] + G.getWeight(cur, w) < dis[w]){dis[w] = dis[cur] + G.getWeight(cur, w);pq.add(new Node(w, dis[w]));pre[w] = cur;}}
}

3.3 记录路径

private int[] pre;
  • 更新pre数组
for(int w: G.adj(cur))if(!visited[w]){if(dis[cur] + G.getWeight(cur, w) < dis[w]){dis[w] = dis[cur] + G.getWeight(cur, w);pq.add(new Node(w, dis[w]));pre[w] = cur;}}
  • 输出路径
    public Iterable<Integer> path(int t){ArrayList<Integer> res = new ArrayList<>();if(!isConnectedTo(t)) return res;int cur = t;while(cur != s){res.add(cur);cur = pre[cur];}res.add(s);Collections.reverse(res);return res;}

3.4 整体

package Chapter11_Min_Path.Dijkstra_pq;import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.PriorityQueue;public class Dijkstra {private WeightedGraph G;private int s;private int[] dis;private boolean[] visited;private int[] pre;private class Node implements Comparable<Node>{public int v, dis;public Node(int v, int dis){this.v = v;this.dis = dis;}@Overridepublic int compareTo(Node another){return dis - another.dis;}}public Dijkstra(WeightedGraph G, int s){this.G = G;G.validateVertex(s);this.s = s;dis = new int[G.V()];Arrays.fill(dis, Integer.MAX_VALUE);pre = new int[G.V()];Arrays.fill(pre, -1);dis[s] = 0;pre[s] = s;visited = new boolean[G.V()];PriorityQueue<Node> pq = new PriorityQueue<Node>();pq.add(new Node(s, 0));while(!pq.isEmpty()){int cur = pq.remove().v;if(visited[cur]) continue;visited[cur] = true;for(int w: G.adj(cur))if(!visited[w]){if(dis[cur] + G.getWeight(cur, w) < dis[w]){dis[w] = dis[cur] + G.getWeight(cur, w);pq.add(new Node(w, dis[w]));pre[w] = cur;}}}}public boolean isConnectedTo(int v){G.validateVertex(v);return visited[v];}public int distTo(int v){G.validateVertex(v);return dis[v];}public Iterable<Integer> path(int t){ArrayList<Integer> res = new ArrayList<>();if(!isConnectedTo(t)) return res;int cur = t;while(cur != s){res.add(cur);cur = pre[cur];}res.add(s);Collections.reverse(res);return res;}static public void main(String[] args){WeightedGraph g = new WeightedGraph("g.txt");Dijkstra dij = new Dijkstra(g, 0);for(int v = 0; v < g.V(); v ++)System.out.print(dij.distTo(v) + " ");System.out.println();System.out.println(dij.path(3));}
}

4 Bellman-Ford算法

4.1 松弛操作

在这里插入图片描述

4.2 负权环

在这里插入图片描述

4.3 算法思想

在这里插入图片描述

4.4 进行V-1次松弛操作

// 进行V-1次松弛操作
for(int pass = 1; pass < G.V(); pass ++){for(int v = 0; v < G.V(); v ++)for(int w: G.adj(v))if(dis[v] != Integer.MAX_VALUE && // 避免对无穷值的点进行松弛操作dis[v] + G.getWeight(v, w) < dis[w]){dis[w] = dis[v] + G.getWeight(v, w);pre[w] = v;}
}

4.5 判断负权环

// 多进行一次操作,如果还有更新,那么存在负权换
for(int v = 0; v < G.V(); v ++)for(int w : G.adj(v))if(dis[v] != Integer.MAX_VALUE &&dis[v] + G.getWeight(v, w) < dis[w])hasNegCycle = true;

4.6 整体

package Chapter11_Min_Path.BellmanFord;import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;public class BellmanFord {private WeightedGraph G;private int s;private int[] dis;private int[] pre;private boolean hasNegCycle = false;public BellmanFord(WeightedGraph G, int s){this.G = G;G.validateVertex(s);this.s = s;dis = new int[G.V()];Arrays.fill(dis, Integer.MAX_VALUE);dis[s] = 0;pre = new int[G.V()];Arrays.fill(pre, -1);// 进行V-1次松弛操作for(int pass = 1; pass < G.V(); pass ++){for(int v = 0; v < G.V(); v ++)for(int w: G.adj(v))if(dis[v] != Integer.MAX_VALUE && // 避免对无穷值的点进行松弛操作dis[v] + G.getWeight(v, w) < dis[w]){dis[w] = dis[v] + G.getWeight(v, w);pre[w] = v;}}// 多进行一次操作,如果还有更新,那么存在负权换for(int v = 0; v < G.V(); v ++)for(int w : G.adj(v))if(dis[v] != Integer.MAX_VALUE &&dis[v] + G.getWeight(v, w) < dis[w])hasNegCycle = true;}public boolean hasNegativeCycle(){return hasNegCycle;}public boolean isConnectedTo(int v){G.validateVertex(v);return dis[v] != Integer.MAX_VALUE;}public int distTo(int v){G.validateVertex(v);if(hasNegCycle) throw new RuntimeException("exist negative cycle.");return dis[v];}public Iterable<Integer> path(int t){ArrayList<Integer> res = new ArrayList<Integer>();if(!isConnectedTo(t)) return res;int cur = t;while(cur != s){res.add(cur);cur = pre[cur];}res.add(s);Collections.reverse(res);return res;}static public void main(String[] args){WeightedGraph g = new WeightedGraph("gw2.txt");BellmanFord bf = new BellmanFord(g, 0);if(!bf.hasNegativeCycle()){for(int v = 0; v < g.V(); v ++)System.out.print(bf.distTo(v) + " ");System.out.println();System.out.println(bf.path(3));}elseSystem.out.println("exist negative cycle.");WeightedGraph g2 = new WeightedGraph("g2.txt");BellmanFord bf2 = new BellmanFord(g2, 0);if(!bf2.hasNegativeCycle()){for(int v = 0; v < g2.V(); v ++)System.out.print(bf2.distTo(v) + " ");System.out.println();}elseSystem.out.println("exist negative cycle.");}
}

5 Floyed算法

在这里插入图片描述

5.1 设置记录两点最短距离的数组,并初始化两点之间的距离

private int[][] dis;
  • 初始化两点之间的距离
for(int v = 0; v < G.V(); v ++){dis[v][v] = 0;for(int w: G.adj(v))dis[v][w] = G.getWeight(v, w);
}

5.2 更新两点之间的距离

第一重循环:测试两点之间经过点t是否存在更短的路径。

        for(int t = 0; t < G.V(); t ++)for(int v = 0; v < G.V(); v ++)for(int w = 0; w < G.V(); w ++)if(dis[v][t] != Integer.MAX_VALUE && dis[t][w] != Integer.MAX_VALUE&& dis[v][t] + dis[t][w] < dis[v][w])dis[v][w] = dis[v][t] + dis[t][w];

在这里插入图片描述
在这里插入图片描述

相关文章:

图论14-最短路径-Dijkstra算法+Bellman-Ford算法+Floyed算法

文章目录 0 代码仓库1 Dijkstra算法2 Dijkstra算法的实现2.1 设置距离数组2.2 找到当前路径的最小值 curdis&#xff0c;及对应的该顶点cur2.3 更新权重2.4 其他接口2.4.1 判断某个顶点的连通性2.4.2 求源点s到某个顶点的最短路径 3使用优先队列优化-Dijkstra算法3.1 设计内部类…...

OpenCV 实现透视变换

一&#xff1a;OpenCV透视变换的概念 仿射变换(affine transform)与透视变换(perspective transform)在图像还原、图像局部变化处理方面有重要意义。通常&#xff0c;在2D平面中&#xff0c;仿射变换的应用较多&#xff0c;而在3D平面中&#xff0c;透视变换又有了自己的一席之…...

ChinaSoft 论坛巡礼|开源软件供应链论坛

2023年CCF中国软件大会&#xff08;CCF ChinaSoft 2023&#xff09;由CCF主办&#xff0c;CCF系统软件专委会、形式化方法专委会、软件工程专委会以及复旦大学联合承办&#xff0c;将于2023年12月1-3日在上海国际会议中心举行。 本次大会主题是“智能化软件创新推动数字经济与社…...

VUE 组合式API

响应式 data 选项式API_响应式 <template><h3>选项式API</h3><p>{{ message }}</p> </template> <script> export default {data(){return{message:"选项式API 绑定数据"}} } </script>组合式API_响应式 <…...

尝试使用php给pdf添加水印

在开发中增加pdf水印的功能是很常见的&#xff0c;经过实验发现这中间还是会有很多问题的。第一种模式&#xff0c;采用生成图片的方式把需要添加的内容保存成图片&#xff0c;再将图片加到pdf中间&#xff0c;这种方法略麻烦一些&#xff0c;不过可以解决中文乱码的问题&#…...

ubuntu上安装edge浏览器

1下载edge浏览器 官网下载 edge浏览器的linux版本可在上面的官网中寻找。 我选择的是Linux(.deb)。 2 安装 可在终端的edge安装包所在的路径下输入下面命令安装。 sudo dpkg -i edge安装包的名称.deb3 安装可能存在的问题 1dpkg:依赖关系问题使得edge-stable的配置工作不…...

动态切换 Spring Boot 打包配置:使用 Maven Profiles 管理 JAR 和 WAR

引言 在多环境开发中&#xff0c;我们经常需要根据部署环境来改变 Spring Boot 应用的打包方式。本文将探讨如何使用 Maven Profiles 结合依赖排除来动态地切换 JAR 和 WAR 打包配置。 1. 修改 pom.xml 以支持 WAR 包 转换 Spring Boot 应用从 JAR 到 WAR 时&#xff0c;首先…...

微信小程序使用阿里巴巴矢量图标

一&#xff0c;介绍 微信小程序使用图标有两种方式&#xff0c;一种是在线获取&#xff0c;一种是下载到本地使用&#xff0c; 第一种在线获取的有个缺点就是图标是灰色的&#xff0c;不能显示彩色图标&#xff0c;而且第一种是每次请求资源的&#xff0c;虽然很快&#xff0…...

使用JAVA pdf转word

使用spire.pdf 非常简单。 查看 https://mvnrepository.com/artifact/e-iceblue/spire.pdf 注意&#xff0c;这个包在 e-iceblue 下。 下面开始撸代码 先来pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://mav…...

成都瀚网科技有限公司抖音带货的正规

成都瀚网科技有限公司&#xff0c;一家在科技领域有着深厚积累的公司&#xff0c;近年来也开始涉足电子商务领域&#xff0c;特别是在抖音等短视频平台上进行带货活动。在这个充满机遇与挑战的时代&#xff0c;该公司以其独特的商业模式和运营策略&#xff0c;正在赢得消费者的…...

windows服务器热备、负载均衡配置

安装网络负载平衡 需要加入的服务器上全部需要安装网络负载平衡管理器 图形化安装&#xff1a;使用服务器管理器安装 在服务器管理器中&#xff0c;使用“添加角色和功能”向导添加网络负载均衡功能。 完成向导后&#xff0c;将安装 NLB&#xff0c;并且不需要重启计算机。 …...

samba服务器搭建 挂载远程目录 常用配置参数介绍

samba 直接复用linux的用户&#xff0c;但是Linux 用户的密码和 smbpasswd 设置的密码是分开的。 Linux 用户的密码是存储在 Linux 系统的用户数据库中&#xff0c;通常是 /etc/shadow 文件中以加密形式存储的。Samba 用户的密码是存储在专门的 Samba 密码数据库中 smbpasswd…...

Ansible命令使用

ansible ansible的命令 ansible命令模块Pingcommand 模块shell 模块copy 模块file 模块fetch 模块cron 模块yum 模块service 模块user 模块group 模块script 模块setup 模块get_url模块stat模块unarchive模块unarchive模块 ansible的命令 /usr/bin/ansible  Ansibe AD-Hoc 临…...

element 周选择器el-date-picker

2023.11.13今天我学习了在使用element 周选择器的时候&#xff0c;我们会发现默认的时间选择为星期日到下一个星期一&#xff0c;如图&#xff1a; 我们需要改成显示星期一到星期天&#xff0c;只需要加一行代码&#xff1a;picker-options <el-date-pickertype"week&…...

No200.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…...

前端面试之事件循环

什么是事件循环 首先&#xff0c; JavaScript是一门单线程的语言&#xff0c;意味着同一时间内只能做一件事&#xff0c;这并不意味着单线程就是阻塞&#xff0c;而是实现单线程非阻塞的方法就是事件循环 在JavaScript中&#xff0c;所欲任务都可以分为&#xff1a; 同步任务…...

sass 封装媒体查询工具

背景 以往写媒体查询可能是这样的&#xff1a; .header {display: flex;width: 100%; }media (width > 320px) and (width < 480px) {.header {height: 50px;} }media (width > 480px) and (width < 768px) {.header {height: 60px;} }media (width > 768px) …...

眼科动态图像处理系统使用说明(2023-8-11 ccc)

眼科动态图像处理系统使用说明 2023-8-11 ccc 动态眼科图像捕捉存贮分析与传输系统&#xff0c;是由计算机软件工程师和医学专家组结合&#xff0c;为满足医院临床工作的需要&#xff0c;在2000年开发的专门用于各类眼科图像自动化分析、处理和传输的软件系统。该系统可以和各…...

国际阿里云:提高CDN缓存命中率教程!!!

CDN缓存命中率低会导致源站压力大&#xff0c;静态资源访问效率低。您可以根据导致CDN缓存命中率低的具体原因&#xff0c;选择对应的优化策略来提高CDN的缓存命中率。 背景信息 CDN通过将静态资源缓存在CDN节点上实现资源访问加速。当客户端访问某资源时&#xff0c;如果CDN节…...

关于“谈谈你对 ES 的理解”

普通人 它是一个基于 Apache Lucene 开源的一个分布式搜索引擎框架。 一般用它来做 ● 日志记录和分析 ● 公共数据采集 ● 全文检索 ● 数据可视化分析等等 高手 Elasticsearch &#xff0c;简称 ES 。它是建立在全文搜索引擎库 Apache Lucene 基础之上的一个开源的搜索…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...