当前位置: 首页 > news >正文

生成式AI - Knowledge Graph Prompting:一种基于大模型的多文档问答方法

大型语言模型(LLM)已经彻底改变了自然语言处理(NLP)任务。它们改变了我们与文本数据交互和处理的方式。这些强大的AI模型,如OpenAI的GPT-4,改变了理解、生成人类类似文本的方式,导致各种行业出现了众多突破性应用。

LangChain是一个用于构建基于大型语言模型(如GPT)的应用程序的开源框架。它使应用程序能够将语言模型连接到其他数据源,并允许语言模型与其环境进行交互。

    在这篇博客中,我们将讨论LangChain在基于LLM的应用开发中的应用。通过提示LLM,现在比以前任何时候都可以更快地开发AI应用程序。基于LLM的应用需要多次提示和输出解析,因此我们需要为此编写大量代码。LangChain通过利用NLP应用开发中发现的基本抽象,使得这一开发过程变得更加容易。本博客的内容主要基于短课程LangChain用于LLM应用开发。

LangChain框架概述LangChain是一个用于开发应用程序的开源框架。它将大型语言模型(如GPT-4)与外部数据相结合。LangChain有Python或JavaScript(TypeScript)包可用。LangChain注重组合和模块化。它具有模块化组件,其中单个组件可以相互结合使用,也可以单独使用。LangChain可以应用于多个用例,并可以组合其模块化组件以实现更完整的端到端应用程序。

LangChain的关键组件LangChain强调灵活性和模块化。它将自然语言处理流程划分为独立的模块化组件,使开发人员能够根据需要定制工作流程。LangChain框架可以分为六个模块,每个模块允许与LLM进行不同方面的交互。

模型:

  • LLMs — 20+集成

  • Chat Models

  • Text Embedding Models — 10+集成 提示:

  • 提示模板

  • 输出解析器 — 5+集成

  • 示例选择器 — 10+集成 索引:

  • 文档加载器: 50+集成

  • 文本拆分器: 10+集成

  • 向量空间: 10+集成

  • 检索器: 5+集成/实现 链:

  • Prompt + LLM + Output parsing

  • 可用作更长链的构建块

  • 更多特定于应用的链:20+类型

  • 检索器: 5+集成/实现 代理:

  • 代理是一种端到端用例类型,将模型用作推理引擎

  • 代理类型: 5+类型

  • 代理工具包: 10+实现

模型模型是任何语言模型应用的核心元素。模型指的是支持LLM的语言模型。LangChain提供了与任何语言模型接口和集成的构建块。LangChain为两种类型的模型提供接口和集成:

LLMs — 以文本字符串作为输入并返回文本字符串的模型Chat Models — 由语言模型支持但以聊天消息列表作为输入并返回聊天消息的模型。

# This is langchain's abstraction for chatGPT API Endpointfrom langchain.chat_models import ChatOpenAI​​​​​​
# To control the randomness and creativity of the generated text by an LLM, # use temperature = 0.0chat = ChatOpenAI(temperature=0.0)

Prompts是编程模型的新方式。提示是指创建输入以传递到模型的风格。提示通常由多个组件构成。提示模板和示例选择器提供了主要类和函数,以便轻松构建和使用提示。

我们将定义一个模板字符串,并使用该模板字符串和ChatPromptTemplate从LangChain创建提示模板。

提示模板

# Define a template string
template_string = """Translate the text that is delimited by triple backticks \
into a style that is {style}. text: ```{text}```
"""
# Create a prompt template using above template stringfrom langchain.prompts import ChatPromptTemplateprompt_template = ChatPromptTemplate.from_template(template_string

上述的prompt_template有两个字段,即style和text。我们也可以从此提示模板中提取原始模板字符串。现在,如果我们想要将文本翻译为某种其他样式,我们需要定义我们的翻译样式和文本。

customer_style = """American English in a calm and respectful tone
"""customer_email = """
Arrr, I be fuming that me blender lid flew off and splattered me kitchen walls \
with smoothie! And to make matters worse, the warranty don't cover the cost of \
cleaning up me kitchen. I need yer help right now, matey!
"""

在这里,我们将风格设置为美国英语,语气平静且尊重。我们使用带有将被三个反引号括起来的文本翻译为特定风格的f-string指令来指定提示,然后将上述样式(客户风格)和文本(客户电子邮件)传递给LLM进行文本翻译。

# customer_message will generate the prompt and it will be passed into 
# the llm to get a response. 
customer_messages = prompt_template.format_messages(style=customer_style,text=customer_email)# Call the LLM to translate to the style of the customer message. 
customer_response = chat(customer_messages)

当我们构建复杂的应用程序时,提示可以变得相当长和详细。我们不使用f字符串,而是使用提示模板,因为提示模板是有用的抽象,可以帮助我们重用好的提示。我们可以创建提示模板并重用这些提示模板,并为模型指定输出样式和文本以供工作。

LangChain提供了一些常见操作的提示,例如摘要或回答问题,或者连接到SQL数据库或连接到不同的API。因此,通过使用LangChain的一些内置提示,我们可以快速获得一个正在运行的应用程序,而无需自行设计提示。

输出解析器LangChain的提示库的另一个方面是它还支持输出解析。输出解析器有助于从语言模型的输出中获取结构化信息。输出解析器涉及将模型的输出解析为更结构化的格式,以便我们可以使用输出执行下游任务。

当我们使用LLMs构建复杂应用程序时,我们经常指示LLM以特定格式生成其输出,例如使用特定的关键字。LangChain的库函数假设LLM将使用某些关键字来解析其输出。

我们可以有一个LLM输出JSON,我们将使用LangChain解析该输出,如下所示:

我们需要首先定义我们希望如何格式化LLM输出。在这种情况下,我们定义了一个具有提及产品是否为礼物、交付所需的天数以及价格是否可负担的字段的Python字典。

# Following is one example of the desired output.
{"gift": False,"delivery_days": 5,"price_value": "pretty affordable!"
}

我们可以在下面提到的三个反引号中包含客户评论。我们可以定义以下评论模板:​​​​​​​​​​​​​​

# This is an example of customer review and a template that try to get the desired output
customer_review = """\
Need to be actual review
"""review_template = """\
For the following text, extract the following information:gift: Was the item purchased as a gift for someone else? \
Answer True if yes, False if not or unknown.delivery_days: How many days did it take for the product \
to arrive? If this information is not found, output -1.price_value: Extract any sentences about the value or price,\
and output them as a comma separated Python list.Format the output as JSON with the following keys:
gift
delivery_days
price_valuetext: {text}
"""# This is an example of customer review and a template that try to get the desired output
customer_review = """\
Need to be actual review
"""review_template = """\
For the following text, extract the following information:gift: Was the item purchased as a gift for someone else? \
Answer True if yes, False if not or unknown.delivery_days: How many days did it take for the product \
to arrive? If this information is not found, output -1.price_value: Extract any sentences about the value or price,\
and output them as a comma separated Python list.Format the output as JSON with the following keys:
gift
delivery_days
price_valuetext: {text}
"""# We will wrap all review template, customer review in langchain to get output 
# in desired format. We will have prompt template created from review template.from langchain.prompts import ChatPromptTemplateprompt_template = ChatPromptTemplate.from_template(review_template)
print(prompt_template)# Create messages using prompt templates created earlier and customer review. 
# Finally, we pass messgaes to OpenAI endpoint to get response.messages = prompt_template.format_messages(text=customer_review)
chat = ChatOpenAI(temperature=0.0)
response = chat(messages)
print(response.content)

上述响应仍然不是字典,而是字符串。我们需要使用Python字典将LLM输出字符串解析为字典。我们需要为Python字典中的每个字段项定义ResponseSchema。为了简洁起见,我没有提供这些代码片段。它们可以在我的GitHub笔记本中找到。这是一种非常有效的方法,可以将LLM输出解析为Python字典,使其更易于在下游处理中使用。

ReAct框架

图片

在上述示例中,LLM使用诸如“思想”、“行动”和“观察”等关键词,使用名为ReAct的框架执行思维推理链。“思想”是LLM所想的,通过给LLM思考的空间,LLM可以得到更准确的结论。“行动”是一个关键词来执行特定的行动,而“观察”是一个关键词来展示LLM从特定行动中所学到的内容。如果我们有一个指示LLM使用这些特定关键词(如思想、行动和观察)的提示,那么这些关键词可以与解析器结合使用,以提取标记有这些关键词的文本。

记忆大型语言模型无法记住之前的对话。

当你与这些模型互动时,它们自然不会记得你之前说的话或之前的所有对话,这在你构建一些应用程序(如聊天机器人)并希望与它们进行对话时是一个问题。

通过模型、提示和解析器,我们可以重用我们自己的提示模板,与他人共享提示模板,或使用LangChain内置的提示模板,这些模板可以与输出解析器结合使用,以便我们获得特定格式的输出,并让解析器解析该输出并将其存储在特定字典或其他数据结构中,从而使下游处理更容易。

我将在下一篇博客中讨论链和代理。我还将在我的另一篇博客中讨论如何在我们的数据中进行问题回答。最后,我们可以看到,通过提示LLM或大型语言模型,现在比以前任何时候都更有可能开发出更快的AI应用程序。但是一个应用程序可能需要多次提示LLM并解析其输出,因此需要编写大量的粘合代码。Langchain有助于简化这个过程。

相关文章:

生成式AI - Knowledge Graph Prompting:一种基于大模型的多文档问答方法

大型语言模型(LLM)已经彻底改变了自然语言处理(NLP)任务。它们改变了我们与文本数据交互和处理的方式。这些强大的AI模型,如OpenAI的GPT-4,改变了理解、生成人类类似文本的方式,导致各种行业出现…...

深度学习AIR-PolSAR-Seg图像数据预处理

文章目录 深度学习sar图像数据预处理一.图片预处理操作1.log(1x)处理2.sqrt平方化处理 二.原网络训练效果展示原始数据训练效果展示: 三.对比实验1.采用原始数据2.采用取log(1x)后的数据3.采用取平方后归一化处理: 四.总结:五.思考 深度学习s…...

求最大公约数math.gcd()

【小白从小学Python、C、Java】 【计算机等级考试500强双证书】 【Python-数据分析】 求最大公约数 math.gcd() [太阳]选择题 下列代码执行输出的结果是? import math print("【执行】print(math.gcd(6, 8))") print(math.gcd(6, 8)) print(&quo…...

数据结构之队列

目录 引言 队列的概念与结构 队列的实现 定义 初始化 销毁 入队 判断队列是否为空 出队 获取队头元素 获取队尾元素 检测队列中有效元素个数 元素访问 源代码 queue.h queue.c test.c 引言 数据结构之路经过栈后,就来到了与栈联系紧密的兄弟—…...

MySQL数据库——存储过程-循环(while、repeat、loop)

目录 while 介绍 案例 repeat 介绍 案例 loop 介绍 案例一 案例二 while 介绍 while 循环是有条件的循环控制语句。满足条件后,再执行循环体中的SQL语句。具体语法为: -- 先判定条件,如果条件为true,则执行逻辑&#…...

Django路由

路由系统 1.Django1中的路由1.1 普通形式1.2 分组1.2.1 无名分组1.2.2 有名分组 2. Django2版本2.1 传统的路由2.2 正则表达式路由 3. 路由分发3.1 include(一般使用此方式做路由分发)3.2 手动分发 4. name别名及使用name的反向URL生成4.1 一般情况下的别名使用及反向生成4.2 分…...

头歌实践平台-数据结构-二叉树及其应用

第1关:实现二叉树的创建 #include "binary_tree.h"BiTreeNode* CreatBiTree(char* s, int &i, int len) // 利用先序遍历创建二叉树 // 参数:先序遍历字符串s,字符串初始下标i0,字符串长度len。 // 返回&#xff1…...

2023.11.11通过html内置“required-star“添加一个红色的星号来表示必填项

2023.11.11通过html内置"required-star"添加一个红色的星号来表示必填项 在HTML中&#xff0c;可以使用标签来为元素添加说明。同时可以通过添加一个红色的星号来表示必填项。 <!DOCTYPE html> <html lang"en"> <head><meta charse…...

pcie【C#】

根据提供的引用内容&#xff0c;使用C#编写PCIE的Demo需要遵循以下步骤&#xff1a;1.连接好硬件后&#xff0c;烧录bit文件&#xff0c;安装PCIe内核驱动&#xff0c;然后重启计算机。2.打开VS工程&#xff0c;创建一个新的C#控制台应用程序项目。3.在项目中添加对C DLL的引用…...

西门子精智屏数据记录U盘插拔问题总结

西门子精智屏数据记录U盘插拔问题总结 注意: 数据记录过程中不允许带电插拔 U 盘! 数据记录的相关功能可参考以下链接中的内容: TIA博途wincc V16 如何进行变量周期归档?...

(论文阅读27/100)Deep Filter Banks for Texture Recognition and Segmentation

27.文献阅读笔记 简介 题目 Deep Filter Banks for Texture Recognition and Segmentation 作者 Mircea Cimpoi, Subhransu Maji, Andrea Vedaldi, 原文链接 http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Cimpoi_Deep_Filter_Banks_2015_CVPR_pap…...

ARMday06(串口)

代码&#xff1a; #include "gpio.h" #include "stm32mp1xx_gpio.h" #include "stm32mp1xx_rcc.h" #include "stm32mp1xx_uart.h" void init(); char getc(); void putc(const char data); int main() {init();//初始化putc(j);char …...

Rust字符串详解

文章目录 字符串切片String迭代方法基础字符串方法容量操作增删改查 字符串切片 我们所熟知的由双引号括起来的字符串&#xff0c;在Rust中只是个字符串切片&#xff0c;又叫字符串字面值。这种类型一旦创建&#xff0c;则不可更改。但支持索引&#xff0c;从切片中索引出来的…...

(四)七种元启发算法(DBO、LO、SWO、COA、LSO、KOA、GRO)求解无人机路径规划MATLAB

一、七种算法&#xff08;DBO、LO、SWO、COA、LSO、KOA、GRO&#xff09;简介 1、蜣螂优化算法DBO 蜣螂优化算法&#xff08;Dung beetle optimizer&#xff0c;DBO&#xff09;由Jiankai Xue和Bo Shen于2022年提出&#xff0c;该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁殖…...

Window安装MongoDB

三种NOSQL的一种,Redis MongoDB ES 应用场景: 1.社交场景:使用Mongodb存储用户信息,以及用户发表的朋友圈信息,通过地理位置索引实现附近的人,地点等功能 2.游戏场景:使用Mongodb存储游戏用户信息,用户的装备,积分等直接以内嵌文档的形式存储,方便查询,高效率存储和访问…...

20.有效的括号(LeetCode)

思路&#xff1a;用栈的后进先出的特性&#xff0c;来完成题目的要求 因为C有库&#xff0c;可以直接用&#xff0c;而C语言没有&#xff0c;所以我们直接把写好的栈拷贝上来用。 首先&#xff0c;完成框架的搭建 其次&#xff0c;再实现循环内的部分。1.左括号入栈 2.右括…...

Vue3组件传参之Mitt插件方式

在vue3中$on&#xff0c;$off 和 $once 实例方法已被移除&#xff0c;组件实例不再实现事件触发接口&#xff0c;因此大家熟悉的EventBus便无法使用了。然而我们习惯了使用EventBus&#xff0c;对于这种情况我们可以使用Mitt库&#xff08;其实就是我们视频中讲的发布订阅模式的…...

【数据仓库】数仓分层方法

文章目录 一. 数仓分层的意义1. 清晰数据结构。2. 减少重复开发3. 方便数据血缘追踪4. 把复杂问题简单化5. 屏蔽原始数据的异常6. 数据仓库的可维护性 二. 如何进行数仓分层&#xff1f;1. ODS层2. DW层2.1. DW层分类2.2. DWD层2.3. DWS 3. ADS层 4、层次调用规范 一. 数仓分层…...

Linux网络——自定义协议

目录 一.什么是协议 二.协议与报文 三.自定义协议 1.封装套接字 2.构建请求与响应 3.序列化和反序列化 4.报头添加和去除 5.报文读取 四.服务器端程序 五.客户端程序 一.什么是协议 协议在生活中泛指&#xff1a;双方或多方为了完成某项任务或达成某种目的而制定的共…...

【OpenCV实现图像:用OpenCV图像处理技巧之巧用直方图】

文章目录 概要前置条件统计数据分析直方图均衡化原理小结 概要 图像处理是计算机视觉领域中的重要组成部分&#xff0c;而直方图在图像处理中扮演着关键的角色。如何巧妙地运用OpenCV库中的图像处理技巧&#xff0c;特别是直方图相关的方法&#xff0c;来提高图像质量、改善细…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解&#xff0c;涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容&#xff0c;并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念&#xff08;ACID&#xff09; 事务是…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量&#xff1a;setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...