线性代数(四)| 解方程 齐次性 非齐次性 扩充问题
文章目录
- 1 方程解的个数
- 2 解方程步骤
- 2.1 齐次性方程组
- 2.2 非齐次方程组
- 3 一些扩充问题
系数矩阵 增广矩阵
A m × n X = B A_{m×n}X=B Am×nX=B
1 方程解的个数
m 代表有m个方程 n代表有n个未知数
系数矩阵的秩与增广矩阵的秩不同 无解
若相同 ,如系数矩阵的秩和未知数个数n相同,则有唯一解,若系数矩阵的秩小于未知数个数n,则有无穷多解

2 解方程步骤
2.1 齐次性方程组
(1) 写出系数矩阵
(2)初等变换到行简化阶梯矩阵
(3)写出同解方程组
(4)赋值写出基础解系
例题:求解方程组


2.2 非齐次方程组
齐次性方程组的通解加上非齐次性方程组的一个特解
(1) 写出增广矩阵
(2)初等行变换到行简化阶梯矩阵
(3)写出同解方程组代入特值求出一个特解
(4)去掉常量代入特值求得齐次性方程组的通解


3 一些扩充问题
1、线性无关线性相关相结合的知识点

求齐次性方程组的通解加上一个非齐次性方程组的一个特解
相关文章:
线性代数(四)| 解方程 齐次性 非齐次性 扩充问题
文章目录 1 方程解的个数2 解方程步骤2.1 齐次性方程组2.2 非齐次方程组 3 一些扩充问题 系数矩阵 增广矩阵 A m n X B A_{mn}XB AmnXB 1 方程解的个数 m 代表有m个方程 n代表有n个未知数 系数矩阵的秩与增广矩阵的秩不同 无解 若相同 ,如系数矩阵的秩和未知…...
快乐数问题
编写一个算法来判断一个数 n 是不是快乐数。 「快乐数」 定义为: 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。 然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。 如果这个过程 结果为 1ÿ…...
8 历史服务器配置
为了查看程序的历史运行情况,需要配置一下历史服务器 1、配置mapred-site.xml vim mapred-site.xml在该文件里面增加如下配置 //原先的配置不用删除 <!-- 历史服务器端地址 --> <property><name>mapreduce.jobhistory.address</name><…...
读书笔记:《精益数据分析》
《精益数据分析 . Lean Analytics Use Data to Build a Better Startup Faster》 加 . 阿利斯泰尔 . 克罗尔 本杰明 . 尤科维奇 著,韩知白 王鹤达 译 2023.7.27 ~ 2023.11.4 本以为是本纯数学的、介绍公式的数据分析用法的书,结果是:…...
酷柚易汛ERP- 组装单与拆卸单操作
1、功能介绍 组装单用来处理企业组装等加工业务,拆卸单用来处理企业拆卸等加工业务,支持一对多的产品加工业务。 2、主要操作 2.1 新增组装单 打开【仓库】-【组装单】新增组装单。 录入组合件与子件,单据审核后,系统根据存货…...
yolov8训练
介绍 训练深度学习模型包括向其提供数据并调整其参数,以便其能够做出准确的预测。Ultralytics YOLOv8中的训练模式旨在充分利用现代硬件功能,对目标检测模型进行有效和高效的训练。本指南旨在涵盖使用YOLOv8强大的一组功能开始训练自己的模型所需的所有细…...
抖音短视频账号矩阵系统、短视频矩阵源码+无人直播源码开发可打包
抖音短视频账号矩阵系统、短视频矩阵源码无人直播源码开发可打包 矩阵系统源码主要有三种框架:Spring、Struts和Hibernate。Spring框架是一个全栈式的Java应用程序开发框架,提供了IOC容器、AOP、事务管理等功能。Struts框架是一个MVC架构的Web应用程序框…...
NI和EttusResearchUSRP设备之间的区别
NI和EttusResearchUSRP设备之间的区别 概述 USRP(通用软件无线电外设)设备是业界领先的商软件定义无线电(SDR)。全球数以千计的工程师使用USRPSDR来快速设计、原型设计和部署无线系统。它们以两个不同的品牌进行营销和销售&…...
WPF UI样式介绍
WPF(Windows Presentation Foundation)是微软的一个用于创建桌面客户端应用程序的UI框架。WPF使用XAML(可扩展应用程序标记语言)作为其界面设计语言,这使得开发者能够以声明性方式定义UI元素和布局。 在WPF中…...
【开源】基于Vue.js的校园失物招领管理系统的设计和实现
目录 一、摘要1.1 项目介绍1.2 项目详细录屏 二、研究内容2.1 招领管理模块2.2 寻物管理模块2.3 系统公告模块2.4 感谢留言模块 三、界面展示3.1 登录注册3.2 招领模块3.3 寻物模块3.4 公告模块3.5 感谢留言模块3.6 系统基础模块 四、免责说明 一、摘要 1.1 项目介绍 基于Vue…...
计算机视觉中目标检测的数据预处理
本文涵盖了在解决计算机视觉中的目标检测问题时,对图像数据执行的预处理步骤。 首先,让我们从计算机视觉中为目标检测选择正确的数据开始。在选择计算机视觉中的目标检测最佳图像时,您需要选择那些在训练强大且准确的模型方面提供最大价值的图…...
es 查询多个索引的文档
es 查询多个索引 第一种做法: 多个索引,用逗号隔开 GET /book_2020_09,book_2021_09/_search第二种做法: 可以用 * 模糊匹配。。比如 book* ,表示查询所有 book开头的 索引。 GET /book*/_search GET /*book*/_search第二种做…...
用java把服务器某个目录日志实时打印出来
1.引入第三方包 <dependency><groupId>com.jcraft</groupId><artifactId>jsch</artifactId><version>0.1.55</version> </dependency>2.代码如下 import com.jcraft.jsch.ChannelExec; import com.jcraft.jsch.JSch; import …...
金融信贷行业如何准确——大数据精准定位获客渠道
通过大数据精准获客,不仅可以及时拦截网址浏览量,还可以访问移动贷款应用软件的高频活跃客户和新注册客户。此外,通过大数据进行准确的客户获取,还可以获得电话座机号码的实时通信记录,捕捉小程序应用程序和关键词搜索…...
LeetCode 面试题 16.21. 交换和
文章目录 一、题目二、C# 题解 一、题目 给定两个整数数组,请交换一对数值(每个数组中取一个数值),使得两个数组所有元素的和相等。 返回一个数组,第一个元素是第一个数组中要交换的元素,第二个元素是第二…...
未来之路:大模型技术在自动驾驶的应用与影响
本文深入分析了大模型技术在自动驾驶领域的应用和影响,万字长文,慢慢观看~ 文中首先概述了大模型技术的发展历程,自动驾驶模型的迭代路径,以及大模型在自动驾驶行业中的作用。接着,详细介绍了大模型的基本定义、基础功…...
Skywalking流程分析_5(字节码增强)
SkyWalkingAgent.Transformer#transform 此方法就是进行字节码增强的过程 private static class Transformer implements AgentBuilder.Transformer {private PluginFinder pluginFinder;Transformer(PluginFinder pluginFinder) {this.pluginFinder pluginFinder;}Override…...
Windows conan环境搭建
Windows conan环境搭建 1 安装conan1.1 安装依赖软件1.1.1 python安装1.1.2 git bash安装1.1.3 安装Visual Studio Community 20191.1.3.1 选择安装的组件1.1.3.2 选择要支持的工具以及对应的SDK 1.1.4 vscode安装 1.3 验证conan功能1.4 查看conancenter是否包含poco包1.5 查看…...
如何使用Cpolar+Tipask,在ubuntu系统上搭建一个私人问答网站
文章目录 前言2.Tipask网站搭建2.1 Tipask网站下载和安装2.2 Tipask网页测试2.3 cpolar的安装和注册 3. 本地网页发布3.1 Cpolar临时数据隧道3.2 Cpolar稳定隧道(云端设置)3.3 Cpolar稳定隧道(本地设置) 4. 公网访问测试5. 结语 前…...
怎么在uni-app中使用Vuex(第一篇)
Vuex简介 vuex的官方网址如下 https://vuex.vuejs.org/zh/ 阅读官网请带着几个问题去阅读: vuex用于什么场景?vuex能给我们带来什么好处?我们为什么要用vuex?vuex如何实现状态集中管理? Vuex用于哪些场景? 组件之…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
