当前位置: 首页 > news >正文

头哥实践平台之MapReduce基础实战

一. 第1关:成绩统计

编程要求

使用MapReduce计算班级每个学生的最好成绩,输入文件路径为/user/test/input,请将计算后的结果输出到/user/test/output/目录下。

先写命令行,如下:
一行就是一个命令

touch file01
echo Hello World Bye World
cat file01
echo Hello World Bye World >file01
cat file01
touch file02
echo Hello Hadoop Goodbye Hadoop >file02
cat file02
start-dfs.sh
hadoop fs -mkdir /usr
hadoop fs -mkdir /usr/input
hadoop fs -ls /usr/output
hadoop fs -ls /
hadoop fs -ls /usr
hadoop fs -put file01 /usr/input
hadoop fs -put file02 /usr/input
hadoop fs -ls /usr/input

代码段部分:

import java.util.StringTokenizer;import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;public class WordCount {/********** Begin **********///Mapper函数public static class TokenizerMapper extends Mapper<LongWritable, Text, Text, IntWritable> {private final static IntWritable one = new IntWritable(1);private Text word = new Text();private int maxValue = 0;public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {StringTokenizer itr = new StringTokenizer(value.toString(),"\n");while (itr.hasMoreTokens()) {String[] str = itr.nextToken().split(" ");String name = str[0];one.set(Integer.parseInt(str[1]));word.set(name);context.write(word,one);}//context.write(word,one);}}public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {private IntWritable result = new IntWritable();public void reduce(Text key, Iterable<IntWritable> values, Context context)throws IOException, InterruptedException {int maxAge = 0;int age = 0;for (IntWritable intWritable : values) {maxAge = Math.max(maxAge, intWritable.get());}result.set(maxAge);context.write(key, result);}}public static void main(String[] args) throws Exception {Configuration conf = new Configuration();Job job = new Job(conf, "word count");job.setJarByClass(WordCount.class);job.setMapperClass(TokenizerMapper.class);job.setCombinerClass(IntSumReducer.class);job.setReducerClass(IntSumReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);String inputfile = "/user/test/input";String outputFile = "/user/test/output/";FileInputFormat.addInputPath(job, new Path(inputfile));FileOutputFormat.setOutputPath(job, new Path(outputFile));job.waitForCompletion(true);/********** End **********/}
}

二. 第2关:文件内容合并去重

编程要求

接下来我们通过一个练习来巩固学习到的MapReduce知识吧。

对于两个输入文件,即文件file1和文件file2,请编写MapReduce程序,对两个文件进行合并,并剔除其中重复的内容,得到一个新的输出文件file3。
为了完成文件合并去重的任务,你编写的程序要能将含有重复内容的不同文件合并到一个没有重复的整合文件,规则如下:

第一列按学号排列;
学号相同,按x,y,z排列;
输入文件路径为:/user/tmp/input/;
输出路径为:/user/tmp/output/。
注意:输入文件后台已经帮你创建好了,不需要你再重复创建。

请先启动Hadoop再点击评测!
所以要先在命令行输入下面启动命令


start-dfs.sh

import java.io.IOException;import java.util.*;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;public class Merge {/*** @param args* 对A,B两个文件进行合并,并剔除其中重复的内容,得到一个新的输出文件C*///在这重载map函数,直接将输入中的value复制到输出数据的key上 注意在map方法中要抛出异常:throws IOException,InterruptedExceptionpublic static class Map  extends Mapper<Object, Text, Text, Text>{/********** Begin **********/public void map(Object key, Text value, Context content) throws IOException, InterruptedException {  Text text1 = new Text();Text text2 = new Text();StringTokenizer itr = new StringTokenizer(value.toString());while (itr.hasMoreTokens()) {text1.set(itr.nextToken());text2.set(itr.nextToken());content.write(text1, text2);}}  /********** End **********/} //在这重载reduce函数,直接将输入中的key复制到输出数据的key上  注意在reduce方法上要抛出异常:throws IOException,InterruptedExceptionpublic static class  Reduce extends Reducer<Text, Text, Text, Text> {/********** Begin **********/public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {Set<String> set = new TreeSet<String>();for(Text tex : values){set.add(tex.toString());}for(String tex : set){context.write(key, new Text(tex));}}  /********** End **********/}public static void main(String[] args) throws Exception{// TODO Auto-generated method stubConfiguration conf = new Configuration();conf.set("fs.default.name","hdfs://localhost:9000");Job job = Job.getInstance(conf,"Merge and duplicate removal");job.setJarByClass(Merge.class);job.setMapperClass(Map.class);job.setCombinerClass(Reduce.class);job.setReducerClass(Reduce.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(Text.class);String inputPath = "/user/tmp/input/";  //在这里设置输入路径String outputPath = "/user/tmp/output/";  //在这里设置输出路径FileInputFormat.addInputPath(job, new Path(inputPath));FileOutputFormat.setOutputPath(job, new Path(outputPath));System.exit(job.waitForCompletion(true) ? 0 : 1);}}

三. 第3关:信息挖掘 - 挖掘父子关系

编程要求

你编写的程序要能挖掘父子辈关系,给出祖孙辈关系的表格。规则如下:

孙子在前,祖父在后;
输入文件路径:/user/reduce/input;
输出文件路径:/user/reduce/output。

请先启动Hadoop再点击评测!
所以要先在命令行输入下面启动命令


start-dfs.sh

import java.io.IOException;
import java.util.*;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;public class simple_data_mining {public static int time = 0;/*** @param args* 输入一个child-parent的表格* 输出一个体现grandchild-grandparent关系的表格*///Map将输入文件按照空格分割成child和parent,然后正序输出一次作为右表,反序输出一次作为左表,需要注意的是在输出的value中必须加上左右表区别标志public static class Map extends Mapper<Object, Text, Text, Text>{public void map(Object key, Text value, Context context) throws IOException,InterruptedException{/********** Begin **********/String line = value.toString();String[] childAndParent = line.split(" ");List<String> list = new ArrayList<>(2);for (String childOrParent : childAndParent) {if (!"".equals(childOrParent)) {list.add(childOrParent);} } if (!"child".equals(list.get(0))) {String childName = list.get(0);String parentName = list.get(1);String relationType = "1";context.write(new Text(parentName), new Text(relationType + "+"+ childName + "+" + parentName));relationType = "2";context.write(new Text(childName), new Text(relationType + "+"+ childName + "+" + parentName));}/********** End **********/}}public static class Reduce extends Reducer<Text, Text, Text, Text>{public void reduce(Text key, Iterable<Text> values,Context context) throws IOException,InterruptedException{/********** Begin **********///输出表头if (time == 0) {context.write(new Text("grand_child"), new Text("grand_parent"));time++;}//获取value-list中value的child
List<String> grandChild = new ArrayList<>();//获取value-list中value的parentList<String> grandParent = new ArrayList<>();//左表,取出child放入grand_childfor (Text text : values) {String s = text.toString();String[] relation = s.split("\\+");String relationType = relation[0];String childName = relation[1];String parentName = relation[2];if ("1".equals(relationType)) {grandChild.add(childName);} else {grandParent.add(parentName);}}//右表,取出parent放入grand_parentint grandParentNum = grandParent.size();int grandChildNum = grandChild.size();if (grandParentNum != 0 && grandChildNum != 0) {for (int m = 0; m < grandChildNum; m++) {for (int n = 0; n < grandParentNum; n++) {//输出结果context.write(new Text(grandChild.get(m)), new Text(grandParent.get(n)));}}}/********** End **********/}}public static void main(String[] args) throws Exception{// TODO Auto-generated method stubConfiguration conf = new Configuration();Job job = Job.getInstance(conf,"Single table join");job.setJarByClass(simple_data_mining.class);job.setMapperClass(Map.class);job.setReducerClass(Reduce.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(Text.class);String inputPath = "/user/reduce/input";   //设置输入路径String outputPath = "/user/reduce/output";   //设置输出路径FileInputFormat.addInputPath(job, new Path(inputPath));FileOutputFormat.setOutputPath(job, new Path(outputPath));System.exit(job.waitForCompletion(true) ? 0 : 1);}
}

相关文章:

头哥实践平台之MapReduce基础实战

一. 第1关&#xff1a;成绩统计 编程要求 使用MapReduce计算班级每个学生的最好成绩&#xff0c;输入文件路径为/user/test/input&#xff0c;请将计算后的结果输出到/user/test/output/目录下。 先写命令行,如下: 一行就是一个命令 touch file01 echo Hello World Bye Wor…...

Linux基础知识——tmux和vim

Linux基础知识——tmux和vim 文章目录 Linux基础知识——tmux和vim一、tmux1. 功能2. 结构3. 操作 二、vim功能模式操作 一、tmux tmux配置&#xff1a;~/.tmux.conf修改为如下 set-option -g status-keys vi setw -g mode-keys visetw -g monitor-activity on# setw -g c0-cha…...

Java Web——TomcatWeb服务器

目录 1. 服务器概述 1.1. 服务器硬件 1.2. 服务器软件 2. Web服务器 2.1. Tomcat服务器 2.2. 简单的Web服务器使用 1. 服务器概述 服务器指的是网络环境下为客户机提供某种服务的专用计算机&#xff0c;服务器安装有网络操作系统和各种服务器的应用系统服务器的具有高速…...

Zookeeper 命令使用和数据说明

文章目录 一、概述二、命令使用2.1 登录 ZooKeeper2.2 ls 命令&#xff0c;查看目录树&#xff08;节点&#xff09;2.3 create 命令&#xff0c;创建节点2.4 delete 命令&#xff0c;删除节点2.5 set 命令&#xff0c;设置节点数据2.6 get 命令&#xff0c;获取节点数据 三、数…...

索尼RSV文件怎么恢复为MP4视频

索尼相机RSV是什么文件&#xff1f; 如果您的相机是索尼SONY A7S3&#xff0c;A7M4&#xff0c;FX3&#xff0c;FX3&#xff0c;FX6&#xff0c;或FX9等&#xff0c;有时录像会产生一个RSV文件&#xff0c;而没有MP4视频文件。RSV其实是MP4的前期文件&#xff0c;经我对RSV文件…...

pytorch-gpu(Anaconda3+cuda+cudnn)

文章目录 下载Anaconda3安装&#xff0c;看着点next就行比较懒所以自动添加path测试 cuda安装的时候不能改路径如果出现报错&#xff0c;关闭杀毒软件一直下一步就好取消勾选“CUDA”中的“Visual Studio Intergration”一直下一步即可测试安装成功 cudnn解压后将这三个文件夹复…...

解析数据洁净之道:BI中数据清理对见解的深远影响

本文由葡萄城技术团队发布。转载请注明出处&#xff1a;葡萄城官网&#xff0c;葡萄城为开发者提供专业的开发工具、解决方案和服务&#xff0c;赋能开发者。 前言 随着数字化和信息化进程的不断发展&#xff0c;数据已经成为企业的一项不可或缺的重要资源。然而&#xff0c;这…...

efcore反向共工程,单元测试

1.安装efcore需要的nuget <PackageReference Include"Microsoft.EntityFrameworkCore" Version"6.0.24" /> <PackageReference Include"Microsoft.EntityFrameworkCore.SqlServer" Version"6.0.24" /> <PackageRefere…...

利用IP风险画像强化金融行业网络安全防御

在数字化时代&#xff0c;金融行业日益依赖互联网和技术创新&#xff0c;但这也使得金融机构成为网络攻击的主要目标。为了应对日益复杂的网络威胁&#xff0c;金融机构迫切需要采用先进的安全技术和工具。其中&#xff0c;IP风险画像技术成为提升网络安全的一项重要策略。 1.…...

1334. 阈值距离内邻居最少的城市

分析题目两点“阈值距离”、“邻居最少”。 “阈值距离”相当于定了个上界&#xff0c;求节点之间的最短距离。 “邻居最少”相当于能连接的点的数量。 求节点之间的最短距离有以下几种方法&#xff1a; 在这道题当中&#xff0c;n的范围是100以内&#xff0c;所以可以考虑O(n…...

Live800:客服行业的发展历程及未来前景

随着信息技术和互联网的高速发展&#xff0c;客服行业也在不断变革和发展。客服行业是一个服务型的行业&#xff0c;其发展历程也与人们对服务需求的变化密切相关。本文将介绍客服行业的发展历程和未来前景。 客服行业的发展历程 20世纪70年代&#xff0c;客服行业主要以电话服…...

exsi的安装和配置

直接虚拟真实机 vcent server 管理大量的exsi SXI原生架构模式的虚拟化技术&#xff0c;是不需要宿主操作系统的&#xff0c;它自己本身就是操作系统。因此&#xff0c;装ESXI的时候就等同于装操作系统&#xff0c;直接拿iso映像(光盘)装ESXI就可以了。 VMware vCente…...

基于springboot实现校园医疗保险管理系统【项目源码】

基于springboot实现校园医疗保险管理系统演示 系统开发平台 在线校园医疗保险系统中&#xff0c;Eclipse能给用户提供更多的方便&#xff0c;其特点一是方便学习&#xff0c;方便快捷&#xff1b;二是有非常大的信息储存量&#xff0c;主要功能是用在对数据库中查询和编程。其…...

Python 如何实现组合(Composite)设计模式?什么是组合设计模式?

什么是组合&#xff08;Composite&#xff09;设计模式&#xff1f; 组合&#xff08;Composite&#xff09;设计模式是一种结构型设计模式&#xff0c;它允许客户端使用单一对象和组合对象&#xff08;对象的组合形成树形结构&#xff09;同样的方式处理。这样&#xff0c;客…...

编辑器vim和编译器gcc/g++

目录 一、编辑器vim 1、概念 2、基本操作 1、进入vim 2、模式切换 3、命令行模式 4、插入模式 5、底行模式 6、vim 的配置 二、编译器gcc/g 1、概念 2、背景知识 3、gcc/g中的编译链接 1、预处理 2、编译 3、汇编 4、链接 4、函数库 1、静态库 2、动态库 一…...

linux 系统下文本编辑常用的命令

一、是什么 Vim是从 vi 发展出来的一个文本编辑器&#xff0c;代码补全、编译及错误跳转等方便编程的功能特别丰富&#xff0c;在程序员中被广泛使用。 简单的来说&#xff0c; vi 是老式的字处理器&#xff0c;不过功能已经很齐全了&#xff0c;但是还是有可以进步的地方 而…...

3D Gaussian Splatting文件的压缩【3D高斯泼溅】

在上一篇文章中&#xff0c;我开始研究高斯泼溅&#xff08;3DGS&#xff1a;3D Gaussian Splatting&#xff09;。 它的问题之一是数据集并不小。 渲染图看起来不错。 但“自行车”、“卡车”、“花园”数据集分别是一个 1.42GB、0.59GB、1.35GB 的 PLY 文件。 它们几乎按原样…...

Spring Boot 整合xxl-job实现分布式定时任务

xxl-job介绍 XXL-JOB是一个分布式任务调度平台&#xff0c;其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线&#xff0c;开箱即用。 xxl是xxl-job的开发者大众点评的许雪里名称的拼音开头。 设计思想 将调度行为抽象形成“调度…...

16.最接近的三数之和

​​题目来源&#xff1a; leetcode题目&#xff0c;网址&#xff1a;16. 最接近的三数之和 - 力扣&#xff08;LeetCode&#xff09; 解题思路&#xff1a; 对数组排序后&#xff0c;枚举第一个值&#xff0c;利用双指针在第一个值固定时的第二三个值。 解题代码&#xff1a…...

php 插入排序算法实现

插入排序是一种简单直观的排序算法&#xff0c;它的基本思想是将一个数据序列分为有序区和无序区&#xff0c;每次从无序区选择一个元素插入到有序区的合适位置&#xff0c;直到整个序列有序为止 5, 3, 8, 2, 0, 1 HP中可以使用以下代码实现插入排序算法&#xff1a; functi…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

手机平板能效生态设计指令EU 2023/1670标准解读

手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读&#xff0c;综合法规核心要求、最新修正及企业合规要点&#xff1a; 一、法规背景与目标 生效与强制时间 发布于2023年8月31日&#xff08;OJ公报&…...

绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化

iOS 应用的发布流程一直是开发链路中最“苹果味”的环节&#xff1a;强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说&#xff0c;这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发&#xff08;例如 Flutter、React Na…...