当前位置: 首页 > news >正文

qt操作文件以及字符串转换

//从文件加载英文属性与中文属性对照表

QFile file(":/propertyname.txt");

if (file.open(QFile::ReadOnly)) {

//QTextStream方法读取速度至少快百分之30

#if 0

while(!file.atEnd()) {

QString line = file.readLine();

appendName(line);

}

#else

QTextStream in(&file);

while (!in.atEnd()) {

QString line = in.readLine();

appendName(line);

}

#endif

file.close();

}

Qt|将QString字符串写入文件中

void writeFile(const QString str)

{

QFile file;

file.setFileName("./log.txt");

//只写 追加写入

if(file.open(QIODevice::WriteOnly|QIODevice::Text|QIODevice::append))

{

QTextStream in(&file);

in<<str<<endl;

}

file.close();

}

String和QString之间的转化

QString qstr;

string str;

str = qstr.toStdString();

qstr = QString::fromStdString(str);

相关文章:

qt操作文件以及字符串转换

//从文件加载英文属性与中文属性对照表QFile file(":/propertyname.txt");if (file.open(QFile::ReadOnly)) {//QTextStream方法读取速度至少快百分之30#if 0while(!file.atEnd()) {QString line file.readLine();appendName(line);}#elseQTextStream in(&file)…...

数组中只出现一次的两个数字(异或法思路)

题目简介 一个数组中只有2个数字只有一个&#xff0c;其他数字都有两个。找出这两个数字。a, b 用HashMap记录就不说了。 这里记录一下用异或的方式解决。 由于异或特性为自己异或自己为0。a^a 0;所以可以异或数组中的所有数字得出 a^b 的结果&#xff0c;其他相同的都消掉…...

python支持的操作系统有哪些

支持python开发环境的系统有Linux、OSX和windows&#xff0c;以及所有主要的操作系统中。 Linux&#xff0c;Linux系统是为编程而设计的&#xff0c;因此在大多数Linux计算机中&#xff0c;都默认安装了Python。编写和维护Linux的人认为会使用这种系统进行编程。要在Linux中运…...

S3C2440开发环境搭建

拿出了之前的S3C2440开发板&#xff0c;然后把移植uboot、移植内核、制作根文件系统、设备树编写驱动等几项再做一遍&#xff0c;这篇文章先记录下环境搭建过程&#xff0c;以及先把现成的uboot、内核、根文件系统下载进去&#xff0c;看看开发板还能不能用&#xff0c;先熟悉一…...

软件测试之测试用例

测试用例 1. 测试用例定义 测试用例又叫做test case&#xff0c;是为某个特殊目标而编制的一组测试输入、执行条件以及预期结果,以便测试某个程序路径或核实是否满足某个特定需求。 2. 编写测试用例的原因 2.1 理清思路&#xff0c;避免遗漏 如果测试的项目大而复杂&#…...

null和undefined的区别有哪些?

null和undefined的区别有哪些&#xff1f;相同点不同点undefinednull总结相同点 1.null和undefined都是js的基本数据类型 2.undefined和null都是假值&#xff08;falsy&#xff09;,都能作为条件进行判断&#xff0c;所以在绝大多数情况下两者在使用上没有区别 if(undefined)…...

【强烈建议收藏:计算机网络面试专题:HTTP协议、HTTP请求报文和响应报文、HTTP请求报文常用字段、HTTP请求方法、HTTP响应码】

一.知识回顾 之前我们一起学习了HTTP1.0、HTTP1.1、HTTP2.0协议之前的区别、以及URL地址栏中输入网址到页面展示的全过程&&DNS域名解析的过程、HTTP协议基本概念以及通信过程、HTTPS基本概念、SSL加密原理、通信过程、中间人攻击问题、HTTP协议和HTTPS协议区别。接下来…...

关于Java中的静态块讲解

文章目录类的加载特性与时机类加载的特性类加载的时机static的三个常用地方什么是静态块?特点写法静态块 static怎么用?类的加载特性与时机 在介绍static之前可以先看看类的相关 类加载的特性 在JVM的生命周期里&#xff0c;每个类只会被加载一次。 类加载的原则&#xf…...

ledcode【用队列实现栈】

目录 题目描述&#xff1a; 解析题目 代码解析 1.封装一个队列 1.2封装带两个队列的结构体 1.3封装指向队列的结构体 1.4入栈函数实现 1.5出栈函数实现 1.6取栈顶数据 1.7判空函数实现 题目描述&#xff1a; 解析题目 这个题我是用c语言写的&#xff0c;所以队列的pu…...

【基础算法】双指针----字符串删减

&#x1f339;作者:云小逸 &#x1f4dd;个人主页:云小逸的主页 &#x1f4dd;Github:云小逸的Github &#x1f91f;motto:要敢于一个人默默的面对自己&#xff0c;强大自己才是核心。不要等到什么都没有了&#xff0c;才下定决心去做。种一颗树&#xff0c;最好的时间是十年前…...

Billu靶场黑盒盲打——思路和详解

一、信息收集 1、探测内网主机IP可以使用各种扫描工具比如nmap&#xff0c;我这里用的是自己编写的。 nmap -n 192.168.12.0/24 #扫描IP&#xff0c;发现目标主机 2、先不着急&#xff0c;先收集一波它的端口&#xff08;无果&#xff09; nmap -n 192.168.12.136 -p 1-10000…...

【2363. 合并相似的物品】

来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 描述&#xff1a; 给你两个二维整数数组 items1 和 items2 &#xff0c;表示两个物品集合。每个数组 items 有以下特质&#xff1a; items[i] [valuei, weighti] 其中 valuei 表示第 i 件物品的 价值 &#xff0c;we…...

【C++提高编程】C++全栈体系(二十四)

C提高编程 第三章 STL - 常用容器 九、map/ multimap容器 1. map基本概念 简介&#xff1a; map中所有元素都是pairpair中第一个元素为key&#xff08;键值&#xff09;&#xff0c;起到索引作用&#xff0c;第二个元素为value&#xff08;实值&#xff09;所有元素都会根…...

c++11 标准模板(STL)(std::unordered_set)(十一)

定义于头文件 <unordered_set> template< class Key, class Hash std::hash<Key>, class KeyEqual std::equal_to<Key>, class Allocator std::allocator<Key> > class unordered_set;(1)(C11 起)namespace pmr { templ…...

AI/CV大厂笔试LeetCode高频考题之基础核心知识点

AI/CV互联网大厂笔试LeetCode高频考题之基础核心知识点算法复习1、二叉树的遍历2、回溯算法3、二分搜索4、滑动窗口算法题5、经典动态规划6、动态规划答疑篇6.1、总结一下如何找到动态规划的状态转移关系7、编辑距离8、戳气球问题9、最长公共子序列 Longest Common Subsequence…...

华为OD机试题,用 Java 解【静态扫描最优成本】问题

最近更新的博客 华为OD机试题,用 Java 解【停车场车辆统计】问题华为OD机试题,用 Java 解【字符串变换最小字符串】问题华为OD机试题,用 Java 解【计算最大乘积】问题华为OD机试题,用 Java 解【DNA 序列】问题华为OD机试 - 组成最大数(Java) | 机试题算法思路 【2023】使…...

常见无线技术方案介绍

无线技术 无线网络大体有两种&#xff1a;WAN&#xff08;广域网&#xff09;、PAN&#xff08;个人区域网&#xff09;。 对于LoRa&#xff0c;NB-IoT&#xff0c;2G / 3G / 4G等无线技术&#xff0c;通常传输距离超过1 km&#xff0c;因此它们主要用于广域网&#xff08;WA…...

收获满满的2022年

收到csdn官方的证书&#xff0c;感谢官方的认可&#xff01;...

react的生命周期

目录 一、初始化阶段 constructor() static getDerivedStateFromProps() componentWillMount() / UNSAFE_componentWillMount() render()&#xff1a; componentDidMount() 二、运行阶段 componentWillUpdate() / UNSAFE_componentWillUpdate() render() getSnapsh…...

scanpy 单细胞分析API接口使用案例

参考&#xff1a;https://zhuanlan.zhihu.com/p/537206999 https://scanpy.readthedocs.io/en/stable/api.html scanpy python包主要分四个模块&#xff1a; 1&#xff09;read 读写模块、 https://scanpy.readthedocs.io/en/stable/api.html#reading 2&#xff09;pp Prepr…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

《信号与系统》第 6 章 信号与系统的时域和频域特性

目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...