【2363. 合并相似的物品】
来源:力扣(LeetCode)
描述:
给你两个二维整数数组 items1
和 items2
,表示两个物品集合。每个数组 items
有以下特质:
items[i] = [valuei, weighti]
其中valuei
表示第i
件物品的 价值 ,weighti
表示第i
件物品的 重量 。items
中每件物品的价值都是 唯一的 。
请你返回一个二维数组 ret
,其中 ret[i] = [valuei, weighti]
, weighti
是所有价值为 valuei
物品的 重量之和 。
注意: ret
应该按价值 升序 排序后返回。
示例 1:
输入:items1 = [[1,1],[4,5],[3,8]], items2 = [[3,1],[1,5]]
输出:[[1,6],[3,9],[4,5]]
解释:
value = 1 的物品在 items1 中 weight = 1 ,在 items2 中 weight = 5 ,总重量为 1 + 5 = 6 。
value = 3 的物品再 items1 中 weight = 8 ,在 items2 中 weight = 1 ,总重量为 8 + 1 = 9 。
value = 4 的物品在 items1 中 weight = 5 ,总重量为 5 。
所以,我们返回 [[1,6],[3,9],[4,5]] 。
示例 2:
输入:items1 = [[1,1],[3,2],[2,3]], items2 = [[2,1],[3,2],[1,3]]
输出:[[1,4],[2,4],[3,4]]
解释:
value = 1 的物品在 items1 中 weight = 1 ,在 items2 中 weight = 3 ,总重量为 1 + 3 = 4 。
value = 2 的物品在 items1 中 weight = 3 ,在 items2 中 weight = 1 ,总重量为 3 + 1 = 4 。
value = 3 的物品在 items1 中 weight = 2 ,在 items2 中 weight = 2 ,总重量为 2 + 2 = 4 。
所以,我们返回 [[1,4],[2,4],[3,4]] 。
示例 3:
输入:items1 = [[1,3],[2,2]], items2 = [[7,1],[2,2],[1,4]]
输出:[[1,7],[2,4],[7,1]]
解释:
value = 1 的物品在 items1 中 weight = 3 ,在 items2 中 weight = 4 ,总重量为 3 + 4 = 7 。
value = 2 的物品在 items1 中 weight = 2 ,在 items2 中 weight = 2 ,总重量为 2 + 2 = 4 。
value = 7 的物品在 items2 中 weight = 1 ,总重量为 1 。
所以,我们返回 [[1,7],[2,4],[7,1]] 。
提示:
- 1 <= items1.length, items2.length <= 1000
- items1[i].length == items2[i].length == 2
- 1 <= valuei, weighti <= 1000
- items1 中每个 valuei 都是 唯一的 。
- items2 中每个 valuei 都是 唯一的
方法:哈希表
思路与算法
我们建立一个哈希表,其键值表示物品价值,其值为对应价值物品的重量之和。依次遍历 items1 和 items2 中的每一项物品,同时更新哈希表。最后,我们取出哈希表中的每一个键值对放入数组,对数组按照 value 值排序即可。
有些语言可以在维护键值对的同时,对键值对按照「键」进行排序,比如 C++ 中的 std::map,这样我们可以省略掉最后对数组的排序过程。
代码:
class Solution {
public:vector<vector<int>> mergeSimilarItems(vector<vector<int>>& items1, vector<vector<int>>& items2) {map<int, int> mp;for (auto &v : items1) {mp[v[0]] += v[1];}for (auto &v : items2) {mp[v[0]] += v[1];}vector<vector<int>> res;for (auto &[k, v] : mp) {res.push_back({k, v});}return res;}
};
执行用时:8 ms, 在所有 C++ 提交中击败了100.00%的用户
内存消耗:16.4 MB, 在所有 C++ 提交中击败了56.10%的用户
复杂度分析
时间复杂度:O((n+m)log(n+m)),其中 n 是 items1 的长度,m 是 items2 的长度。更新哈希表的时间复杂度为 O(n+m),最后排序的时间复杂度为 (n+m)log(n+m),所以总的时间复杂度为 (n+m)log(n+m)。如果使用有序容器(例如 C++ 中的 std::map),其插入和查询的时间复杂度为 O(log(n+m)),故总体时间复杂度仍然是 O((n+m)log(n+m))。
空间复杂度:O(n+m)。哈希表所使用的空间为 O(n+m)。如果使用有序容器(例如 C++ 中的 std::map),其内部实现为红黑树,空间复杂度为 O(n+m)。
author:LeetCode-Solution
相关文章:
【2363. 合并相似的物品】
来源:力扣(LeetCode) 描述: 给你两个二维整数数组 items1 和 items2 ,表示两个物品集合。每个数组 items 有以下特质: items[i] [valuei, weighti] 其中 valuei 表示第 i 件物品的 价值 ,we…...
【C++提高编程】C++全栈体系(二十四)
C提高编程 第三章 STL - 常用容器 九、map/ multimap容器 1. map基本概念 简介: map中所有元素都是pairpair中第一个元素为key(键值),起到索引作用,第二个元素为value(实值)所有元素都会根…...

c++11 标准模板(STL)(std::unordered_set)(十一)
定义于头文件 <unordered_set> template< class Key, class Hash std::hash<Key>, class KeyEqual std::equal_to<Key>, class Allocator std::allocator<Key> > class unordered_set;(1)(C11 起)namespace pmr { templ…...

AI/CV大厂笔试LeetCode高频考题之基础核心知识点
AI/CV互联网大厂笔试LeetCode高频考题之基础核心知识点算法复习1、二叉树的遍历2、回溯算法3、二分搜索4、滑动窗口算法题5、经典动态规划6、动态规划答疑篇6.1、总结一下如何找到动态规划的状态转移关系7、编辑距离8、戳气球问题9、最长公共子序列 Longest Common Subsequence…...

华为OD机试题,用 Java 解【静态扫描最优成本】问题
最近更新的博客 华为OD机试题,用 Java 解【停车场车辆统计】问题华为OD机试题,用 Java 解【字符串变换最小字符串】问题华为OD机试题,用 Java 解【计算最大乘积】问题华为OD机试题,用 Java 解【DNA 序列】问题华为OD机试 - 组成最大数(Java) | 机试题算法思路 【2023】使…...

常见无线技术方案介绍
无线技术 无线网络大体有两种:WAN(广域网)、PAN(个人区域网)。 对于LoRa,NB-IoT,2G / 3G / 4G等无线技术,通常传输距离超过1 km,因此它们主要用于广域网(WA…...

收获满满的2022年
收到csdn官方的证书,感谢官方的认可!...

react的生命周期
目录 一、初始化阶段 constructor() static getDerivedStateFromProps() componentWillMount() / UNSAFE_componentWillMount() render(): componentDidMount() 二、运行阶段 componentWillUpdate() / UNSAFE_componentWillUpdate() render() getSnapsh…...

scanpy 单细胞分析API接口使用案例
参考:https://zhuanlan.zhihu.com/p/537206999 https://scanpy.readthedocs.io/en/stable/api.html scanpy python包主要分四个模块: 1)read 读写模块、 https://scanpy.readthedocs.io/en/stable/api.html#reading 2)pp Prepr…...
【Vue3 第二十一章】Teleport组件传送
一、基本使用场景 有时我们可能会遇到这样的场景:一个组件模板的一部分在逻辑上从属于该组件,但从整个应用视图的角度来看,它在 DOM 中应该被渲染在整个 Vue 应用外部的其他地方。 这类场景最常见的例子就是全屏的模态框。理想情况下&#…...

在 Windows Subsystem for Linux (WSL2) 的 Ubuntu 系统上配置 Vulkan 开发环境
在 Windows Subsystem for Linux (WSL2) 的 Ubuntu 系统上配置 Vulkan 开发环境Vulkan Tutorial https://vulkan-tutorial.com/ Development environment - Linux https://vulkan-tutorial.com/Development_environment 1. Vulkan - Cross platform 3D Graphics https://www…...
放苹果HJ61
入门题目 把m个同样的苹果放在n个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?注意:如果有7个苹果和3个盘子,(5,1,1)和(1,5&#…...
Windows下,OPC UA移植,open62541移植
OPC通信标准的核心是互通性 (Interoperability) 和标准化 (Standardization) 问题。传统的OPC技术在控制级别很好地解决了硬件设备间的互通性问题,在企业层面的通信标准化是同样需要的。OPC UA之前的访问规范都是基于微软的COM/DCOM技术, 这会给新增层面的通信带来不可根除的…...

【Tomcat与Servlet篇1】认识Tomcat与Maven
目录 一、什么是Tomcat 二、Tomcat的几个重要目录 conf文件编辑 Server.xml logs文件 Webapps目录 三、如何使用Tomcat 但是,如果出现了点击之后进行闪退的情况,那又是怎么回事呢? 原因1:环境变量没有配置 原因2&#…...

C++类和对象:拷贝构造函数和运算符重载
目录 一. 拷贝构造函数 1.1 什么是拷贝构造函数 1.2 编译器默认生成的拷贝构造函数 1.3 拷贝构造函数特性总结 二. 运算符重载 2.1 运算符重载概述 2.2 比较运算符重载(> > < <) 2.2.1 >运算符的重载 2.2.2 运算符的重载 2.…...

【IntelliJ IDEA】idea plugins搜索不出来,如何找到插件的解决方案
一、背景描述安装好IDEA后,想下载一些插件来使用,因为IDEA非常方便的一点就是插件使用非常的方便,但是经常会发现进入到插件市场无法搜索到插件的情况,这个时候就有点烦人了。那么怎么解决这个问题呢?以下会把我能想到…...

移动端自动化测试(一)appium环境搭建
自动化测试有主要有两个分类,接口自动化和ui自动化,ui自动化呢又分移动端的和web端的,当然还有c/s架构的,这种桌面程序应用的自动化,使用QTP,只不过现在没人做了。 web自动化呢,现在基本上都是…...

5 逻辑回归及Python实现
1 主要思想 分类就是分割数据: 两个条件属性:直线;三个条件属性:平面;更多条件属性:超平面。 使用数据: 5.1,3.5,0 4.9,3,0 4.7,3.2,0 4.6,3.1,0 5,3.6,0 5.4,3.9,0 . . . 6.2,2.9,1 5.1,2.5…...

技术干货 | Modelica建模秘籍之状态变量
在很多领域都有“系统”这个概念,它描述的往往是一些复杂关系的总和。假如我们将系统看做一个黑箱,那么,在系统的作用下,外界的输入有时会产生令人意想不到的输出,“蝴蝶效应”就是其中的典型案例。图1 一只南美洲亚马…...
LeetCode 2574. 左右元素和的差值
给你一个下标从 0 开始的整数数组 nums ,请你找出一个下标从 0 开始的整数数组 answer ,其中: answer.length nums.length answer[i] |leftSum[i] - rightSum[i]| 其中: leftSum[i] 是数组 nums 中下标 i 左侧元素之和。如果不…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...