当前位置: 首页 > news >正文

放苹果HJ61

入门题目

把m个同样的苹果放在n个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?
注意:如果有7个苹果和3个盘子,(5,1,1)和(1,5,1)被视为是同一种分法。

示例1

输入:

7 3

输出:

8

1 明确子问题是什么?

m个苹果,n个盘子,他们之间存在的关系要么 m 大于 n , m等于 n,或者 m 小于n ;

所有盘子都放苹果的对立事件是什么?
所有盘子都放苹果的对立事件是至少有一个盘子没有放置苹果。因为在所有的盘子都放置了苹果的情况下,没有盘子是没有放置苹果的,所以所有盘子都放苹果和至少有一个盘子没有放置苹果是互为对立事件。换句话说,如果一个事件发生了,那么另一个事件一定不会发生。

我们定义 dp[ m] [n] 为,m个苹果 ,n个盘子时,一共的分法。就是有两种放苹果的情况,要么n个盘子都放满,要么至少空一个盘子。

dp[ m] [n] = n个盘子都放满的放法 + 至少空一个盘子的方法

n个盘子都放满的方法 : 即要保证所有的盘子中至少都有一个,其他的随便放,所以每个盘子都减去一个苹果,共减去n个苹果即m-n 个,即变成了 m-n 个苹果放在n 个盘子中的放法 ,dp[m-n] [n] 。

至少空一个盘子的方法 :dp[m] [n-1]

保证子问题之间互斥,不重叠。

2 初始值

1

1

1

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

3 子问题的递推关系
 if m< n : # 苹果数量少于盘子数量  100 个苹果放在 5 个盘子的放法数量和 5个苹果放在5个盘子的放法数量一样dp[m][n] = dp[m][m]else m>n :# 所有的盘子都不空的情况 + 存在一个盘子空的情况dp[m][n] = dp[m-n][n] + dp[m][n-1] 
4 确定DP数组的计算顺序

递推

 ​defdfs(m,n) :ifm==0 :return1 ; ifn==1 :return1 ; # 只有一个盘子就只有一个放法 ​​ifm<n : returndfs(m,m)# 没有空盘子的放法(每个盘子都至少一个苹果) + 至少一个盘子空着的方法returndfs(m-n, n) +dfs(m, n-1)​if__name__=='__main__' :m,n=map(int,(input().split()) )res=dfs(m,n)print(res)    

动态规划

 # import numpy as np ​defdfs(m,n) :ifm==0 :return1 ; ifn==1 :return1 ; # 只有一个盘子就只有一个放法 ​​ifm<n : returndfs(m,m)# 没有空盘子的放法 + 至少一个盘子空着的方法returndfs(m-n, n) +dfs(m, n-1)​if__name__=='__main__' :m,n=map(int,(input().split()) )# res = dfs(m,n)# print(res)# dp = np.zeros([m+1,n+1],dtype=int)dp= [[0foriinrange(n+1)] foriinrange(m+1)]# 初始化foriinrange(1,n+1): dp[0][i] =1 ; forjinrange(1,m+1): dp[j][1] =1 ; ​foriinrange(1,m+1) :forjinrange(1,n+1) : # 如果苹果数量少于盘子ifi<j  : dp[i][j] =dp[i][j-1]else :# dp[i][j] 即每个状态# dp[i][j] =dp[i-j][j] +dp[i][j-1]​print(dp[m][n])​ ​

相关文章:

放苹果HJ61

入门题目 把m个同样的苹果放在n个同样的盘子里&#xff0c;允许有的盘子空着不放&#xff0c;问共有多少种不同的分法&#xff1f;注意&#xff1a;如果有7个苹果和3个盘子&#xff0c;&#xff08;5&#xff0c;1&#xff0c;1&#xff09;和&#xff08;1&#xff0c;5&#…...

Windows下,OPC UA移植,open62541移植

OPC通信标准的核心是互通性 (Interoperability) 和标准化 (Standardization) 问题。传统的OPC技术在控制级别很好地解决了硬件设备间的互通性问题,在企业层面的通信标准化是同样需要的。OPC UA之前的访问规范都是基于微软的COM/DCOM技术, 这会给新增层面的通信带来不可根除的…...

【Tomcat与Servlet篇1】认识Tomcat与Maven

目录 一、什么是Tomcat 二、Tomcat的几个重要目录 conf文件​编辑 Server.xml logs文件 Webapps目录 三、如何使用Tomcat 但是&#xff0c;如果出现了点击之后进行闪退的情况&#xff0c;那又是怎么回事呢&#xff1f; 原因1&#xff1a;环境变量没有配置 原因2&#…...

C++类和对象:拷贝构造函数和运算符重载

目录 一. 拷贝构造函数 1.1 什么是拷贝构造函数 1.2 编译器默认生成的拷贝构造函数 1.3 拷贝构造函数特性总结 二. 运算符重载 2.1 运算符重载概述 2.2 比较运算符重载&#xff08;> > < <&#xff09; 2.2.1 >运算符的重载 2.2.2 运算符的重载 2.…...

【IntelliJ IDEA】idea plugins搜索不出来,如何找到插件的解决方案

一、背景描述安装好IDEA后&#xff0c;想下载一些插件来使用&#xff0c;因为IDEA非常方便的一点就是插件使用非常的方便&#xff0c;但是经常会发现进入到插件市场无法搜索到插件的情况&#xff0c;这个时候就有点烦人了。那么怎么解决这个问题呢&#xff1f;以下会把我能想到…...

移动端自动化测试(一)appium环境搭建

自动化测试有主要有两个分类&#xff0c;接口自动化和ui自动化&#xff0c;ui自动化呢又分移动端的和web端的&#xff0c;当然还有c/s架构的&#xff0c;这种桌面程序应用的自动化&#xff0c;使用QTP&#xff0c;只不过现在没人做了。 web自动化呢&#xff0c;现在基本上都是…...

5 逻辑回归及Python实现

1 主要思想 分类就是分割数据&#xff1a; 两个条件属性&#xff1a;直线&#xff1b;三个条件属性&#xff1a;平面&#xff1b;更多条件属性&#xff1a;超平面。 使用数据&#xff1a; 5.1,3.5,0 4.9,3,0 4.7,3.2,0 4.6,3.1,0 5,3.6,0 5.4,3.9,0 . . . 6.2,2.9,1 5.1,2.5…...

技术干货 | Modelica建模秘籍之状态变量

在很多领域都有“系统”这个概念&#xff0c;它描述的往往是一些复杂关系的总和。假如我们将系统看做一个黑箱&#xff0c;那么&#xff0c;在系统的作用下&#xff0c;外界的输入有时会产生令人意想不到的输出&#xff0c;“蝴蝶效应”就是其中的典型案例。图1 一只南美洲亚马…...

LeetCode 2574. 左右元素和的差值

给你一个下标从 0 开始的整数数组 nums &#xff0c;请你找出一个下标从 0 开始的整数数组 answer &#xff0c;其中&#xff1a; answer.length nums.length answer[i] |leftSum[i] - rightSum[i]| 其中&#xff1a; leftSum[i] 是数组 nums 中下标 i 左侧元素之和。如果不…...

rollup环境配置

VUE2.x源码学习笔记 1. rollup环境配置 首先在VScode中新建文件夹vue_sc&#xff0c;然后终端打开定位到打开的文件夹&#xff0c;输入“npm init -y”初始化配置项&#xff0c;运行成功之后文件夹新增package.json文件 继续在终端运行"npm install babel/preset-env ba…...

二分查找与二分答案、递推与递归、双指针、并查集和单调队列

二分查找与二分答案 文章目录二分查找与二分答案应用总结例题木材加工题目背景题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1提示数据规模与约定思路代码递归与递推应用总结[NOIP2003 普及组] 栈题目背景题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1提示思…...

如何进行域名购买,获取免费ssl证书,使用springboot绑定ssl证书

前言 小编我将用CSDN记录软件开发求学之路上亲身所得与所学的心得与知识&#xff0c;有兴趣的小伙伴可以关注一下&#xff01;也许一个人独行&#xff0c;可以走的很快&#xff0c;但是一群人结伴而行&#xff0c;才能走的更远&#xff01;让我们在成长的道路上互相学习&#…...

LabVIEW网络服务安全2

LabVIEW网络服务安全2在客户端应用程序中创建签名对请求进行签名要求您具有能够从客户端的编程语言调用的MD5摘要算法以及SHA256加密摘要算法的实现。这两种算法通常都可用于大多数平台。还需要&#xff1a;1. 要使用的HTTP方法的字符串&#xff08;“GET”、“POST”、“PUT”…...

java动态代理

目录儿一、代理模式的作用二、实现代理的方式三、动态代理的实现3.1 jdk动态代理3.2 cglib动态代理一、代理模式的作用 功能增强: 基于某个功能&#xff0c;再增加一些功能。 &#xff08;比如目标类只负责核心功能&#xff0c;其他附属功能通过代理类完成。代理类的方法名与目…...

Python 简单可变、复杂可变、简单不可变、复杂不可变类型的copy、deepcopy的行为

copy模块&#xff1a;copy&#xff1a;浅拷贝deepcopy&#xff1a;深拷贝简单可变类型、复杂可变的copy()、deepcopy()&#xff1a;简单不可变、复杂不可变类型的copy()、deepcopy()&#xff1a;结论&#xff1a;对于简单类型的可变类型copy是深拷贝&#xff0c;改变了该拷贝变…...

QML Item

在QML中所有的可视项目都继承自Item&#xff0c;虽然Item本身没有可视化的外观&#xff0c;但它定义了可视化项目的所有属性。 Item可以作为容器使用&#xff1a; Item{Rectangle{id:retc}Rectangle{id:retc1}Rectangle{id:retc2}Rectangle{id:retc3}} item拥有children属性…...

使用xca工具生成自签证书

本文使用 xca 生成自签证书。 概述 之前使用 openssl 生成证书&#xff0c;在 golang 中测试&#xff0c;发现客户端连接失败&#xff0c;经查发现是Subject Alternative Name不支持导致的。因虚拟机 openssl 版本较低&#xff0c;有个功能无法实现&#xff0c;且升级麻烦&…...

Unity IOS 通过命令行导出IPA

新建一个文件然后输入如下内容 #!/usr/bin/env sh /Applications/Unity/Hub/Editor/2020.1.5f1c1/Unity.app/Contents/MacOS/Unity -quit -batchmode -projectPath /Users/zyt/Test -executeMethod Test.BuildEditor.BuildApp cd /Users/zyt/Test/Xcode/unity-xcode xcodebuil…...

「架构」全链路异步模式

总结自尼恩的全链路异步&#xff1a;网关纯异步化网关层的特点&#xff1a;不需要访问业务数据库只做协议转换和流量转发特点是 IO 密集型&#xff0c;特别适合纯异步的架构&#xff0c;可以极大的节省资源。如何进行网关异步化&#xff1f;使用高性能的通信框架Netty&#xff…...

CleanMyMac4.20最新版新增功能及电脑清理垃圾使用教程

CleanMyMac4.20作为知名的Mac清理工具&#xff0c;仅需一键即可快速而安全地清理系统垃圾&#xff0c;释放磁盘空间&#xff0c;因此一直深受Mac用户的喜爱。在不断更新的版本中&#xff0c;CleanMyMac已经不仅仅满足于只做简单的Mac清理工具&#xff0c;而是为Mac用户提供更多…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集&#xff0c;单周期执行&#xff1b;低功耗、CIP 独立外设&#xff1b;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel&#xff08;原始…...

绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化

iOS 应用的发布流程一直是开发链路中最“苹果味”的环节&#xff1a;强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说&#xff0c;这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发&#xff08;例如 Flutter、React Na…...

sshd代码修改banner

sshd服务连接之后会收到字符串&#xff1a; SSH-2.0-OpenSSH_9.5 容易被hacker识别此服务为sshd服务。 是否可以通过修改此banner达到让人无法识别此服务的目的呢&#xff1f; 不能。因为这是写的SSH的协议中的。 也就是协议规定了banner必须这么写。 SSH- 开头&#xff0c…...