代码随想录算法训练营Day 53 || 1143.最长公共子序列、1035.不相交的线、53. 最大子序和
1143.最长公共子序列
力扣题目链接
给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。
若这两个字符串没有公共子序列,则返回 0。
示例 1:
- 输入:text1 = "abcde", text2 = "ace"
- 输出:3
- 解释:最长公共子序列是 "ace",它的长度为 3。
示例 2:
- 输入:text1 = "abc", text2 = "abc"
- 输出:3
- 解释:最长公共子序列是 "abc",它的长度为 3。
示例 3:
- 输入:text1 = "abc", text2 = "def"
- 输出:0
- 解释:两个字符串没有公共子序列,返回 0。
提示:
- 1 <= text1.length <= 1000
- 1 <= text2.length <= 1000 输入的字符串只含有小写英文字符。
思路
-
定义状态:创建一个二维数组
dp
,其中dp[i][j]
表示text1
的前i
个字符和text2
的前j
个字符的最长公共子序列的长度。 -
状态转移:
- 如果
text1[i-1] == text2[j-1]
,则dp[i][j] = dp[i-1][j-1] + 1
; - 否则,
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
。
- 如果
-
初始化:
dp[0][j]
和dp[i][0]
都应初始化为 0,因为空字符串与任何字符串的最长公共子序列长度都是 0。 -
填充表格:按行或按列填充整个
dp
表格。 -
返回结果:
dp[text1.length][text2.length]
就是最长公共子序列的长度。
class Solution:def longestCommonSubsequence(self, text1: str, text2: str) -> int:m, n = len(text1), len(text2)dp = [[0] * (n + 1) for _ in range(m + 1)]for i in range(1, m + 1):for j in range(1, n + 1):if text1[i - 1] == text2[j - 1]:dp[i][j] = dp[i - 1][j - 1] + 1else:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])return dp[m][n]
1035.不相交的线
力扣题目链接
我们在两条独立的水平线上按给定的顺序写下 A 和 B 中的整数。
现在,我们可以绘制一些连接两个数字 A[i] 和 B[j] 的直线,只要 A[i] == B[j],且我们绘制的直线不与任何其他连线(非水平线)相交。
以这种方法绘制线条,并返回我们可以绘制的最大连线数。
思路
-
定义状态:创建一个二维数组
dp
,其中dp[i][j]
表示数组A
的前i
个元素和数组B
的前j
个元素可以形成的最大连线数。 -
状态转移:
- 如果
A[i-1] == B[j-1]
,则可以在这两个元素之间绘制一条线,因此dp[i][j] = dp[i-1][j-1] + 1
; - 否则,不能在
A[i-1]
和B[j-1]
之间绘制线,所以dp[i][j] = max(dp[i-1][j], dp[i][j-1])
。
- 如果
-
初始化:
dp[0][j]
和dp[i][0]
都应初始化为 0,因为当任一数组为空时,最大连线数为 0。 -
填充表格:按行或按列顺序填充
dp
表格。 -
返回结果:
dp[A的长度][B的长度]
就是可以绘制的最大连线数。
class Solution:def maxUncrossedLines(self, A: List[int], B: List[int]) -> int:m, n = len(A), len(B)dp = [[0] * (n + 1) for _ in range(m + 1)]for i in range(1, m + 1):for j in range(1, n + 1):if A[i - 1] == B[j - 1]:dp[i][j] = dp[i - 1][j - 1] + 1else:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])return dp[m][n]
53. 最大子序和
力扣题目链接(opens new window)
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
- 输入: [-2,1,-3,4,-1,2,1,-5,4]
- 输出: 6
- 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
思路
-
定义状态:创建一个数组
dp
,其中dp[i]
表示以nums[i]
结尾的最大子序和。 -
状态转移:对于每个
i
,有两种情况:- 把
nums[i]
加入前面的子数组中,这种情况下最大子序和是dp[i-1] + nums[i]
; - 从
nums[i]
开始一个新的子数组,这种情况下最大子序和是nums[i]
自己。 因此,dp[i] = max(dp[i-1] + nums[i], nums[i])
。
- 把
-
初始化:
dp[0]
应该初始化为nums[0]
,因为最开始的最大子序和就是数组的第一个元素。 -
结果:遍历
dp
数组,找出最大值,即为最大子序和。
class Solution:def maxSubArray(self, nums: List[int]) -> int:n = len(nums)dp = nums.copy()for i in range(1, n):dp[i] = max(dp[i - 1] + nums[i], nums[i])return max(dp)
相关文章:

代码随想录算法训练营Day 53 || 1143.最长公共子序列、1035.不相交的线、53. 最大子序和
1143.最长公共子序列 力扣题目链接 给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。 一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何…...
Oracle JDBC数据库驱动程序介绍
Maven Central上所有Oracle JDBC数据库驱动程序 现在不仅可以在Maven Central上使用甲骨文数据库最新版本,而且还可以获得所有受支持的Oracle JDBC驱动程序发行版,包括19.3.0.0、18.3.0.0、12.2.0.1和11.2.0.4。从现在开始,Maven Central确实…...
scipy实现单因素方差分析
经典例题 某校高二年级共有四个班,采用四种不同的教学方法进行数学教学,为了比较这四种教学法的效果是否存在明显的差异,期末统考后,从这四个班中各抽取 5 名考生的成绩,如下所示。 班级 一班 二班 三班 四班 …...

深度学习实战59-NLP最核心的模型:transformer的搭建与训练过程详解,手把手搭建与跑通
大家好,我是微学AI,今天给大家介绍一下深度学习实战59-NLP最核心的模型:transformer的搭建与训练过程详解,手把手搭建与跑通。transformer是一种基于自注意力机制的深度学习模型,由Vaswani等人在2017年的论文《Attention is All You Need》中提出。它最初被设计用来处理序…...

一阶滤波器(一阶巴特沃斯滤波器)
连续传递函数G(s) 离散传递函数G(z) 转换为差分方程形式 一阶巴特沃斯滤波器Filter Designer参数设计:参考之前的博客Matlab的Filter Designer工具设计二阶低通滤波器 设计采样频率100Hz,截止频率20Hz。 注意:设计参数使用在离散系统中&…...

.net core中前端vue HTML5 History 刷新页面404问题
放到启动的应用程序的最后面 app.Run(async (context) > {context.Response.ContentType "text/html";await context.Response.SendFileAsync(Path.Combine(env.WebRootPath, "index.html")); });https://blog.csdn.net/lee576/article/details/88355…...

【152.乘积最大子数组】
目录 一、题目描述二、算法原理三、代码实现 一、题目描述 二、算法原理 三、代码实现 class Solution { public:int maxProduct(vector<int>& nums) {int nnums.size();vector<int> f(n);vector<int> g(n);f[0]g[0]nums[0];int retnums[0];for(int i1;…...
如何开发OA系统场景的系统架构
1.开发OA系统场景的系统架构 针对开发OA系统的场景,以下是一个简单的系统架构示例,包括前端、后端和数据库三个基本部分: 前端: 使用React框架进行前端开发,构建用户界面和交互逻辑。前端模块包括日程管理模块、文档管…...
spring boot 集成 RedisSearch 和 RedisJSON
1. 准备工作 环境说明 java 8;redis7.2.2,redis集成RedisSearch、redisJson 模块;spring boot 2.5在执行 redis 命令, 或者监控 程序执行的redis 指令时,可以采用 redisinsight查看,下载地址。 背景说明 需…...

【Kotlin精简】第8章 协程
1 简介 Kotlin 中的协程提供了一种全新处理并发的方式,您可以在 Android 平台上使用它来简化异步执行的代码。协程是从 Kotlin 1.3 版本开始引入,但这一概念在编程世界诞生的黎明之际就有了,最早使用协程的编程语言可以追溯到 1967 年的 Sim…...

【MATLAB源码-第79期】基于蚯蚓优化算法(EOA)的栅格路径规划,输出做短路径图和适应度曲线。
操作环境: MATLAB 2022a 1、算法描述 蚯蚓优化算法(Earthworm Optimisation Algorithm, EOA)是一种启发式算法,灵感来源于蚯蚓在自然界中的行为模式。蚯蚓优化算法主要模仿了蚯蚓在寻找食物和逃避天敌时的行为策略。以下是蚯蚓…...
RPC实现简单解析
RPC是什么,先摘取一段解释: RPC全称为远程过程调用(Remote Procedure Call),它是一种计算机通信协议,允许一个计算机程序调用另一个计算机上的子程序,而无需了解底层网络细节。通过RPCÿ…...

【Ubuntu】Ubuntu20.04下安装视频播放器vlc和录屏软件ssr
【Ubuntu】Ubuntu20.04下安装视频播放器vlc和录屏软件ssr 文章目录 【Ubuntu】Ubuntu20.04下安装视频播放器vlc和录屏软件ssr1. 安装视频播放器vlc2. 安装录屏软件ssr 1. 安装视频播放器vlc sudo apt-get install vlcvlc是一款比较简洁的视频播放器,如下所示 2. 安…...

WMS仓储管理系统与TMS系统整合后的优势
随着全球化的加速和供应链网络的日益复杂,仓库和运输成为企业运营中的两个关键环节。为了更高效地管理这两个环节,许多企业开始探索将WMS仓储管理系统和TMS运输管理系统整合的可能性。这种整合不仅可以提升仓库流程的可见性,还有助于改善调度…...
测试的专用
测试...

sqli-labs(Less-4) extractvalue闯关
extractvalue() - Xpath类型函数 1. 确认注入点如何闭合的方式 2. 爆出当前数据库的库名 http://127.0.0.1/sqlilabs/Less-4/?id1") and extractvalue(1,concat(~,(select database()))) --3. 爆出当前数据库的表名 http://127.0.0.1/sqlilabs/Less-4/?id1") …...

Kafka简单汇总
Kafka的结构图 多个Parttion共同组成这个topic的所有消息。每个consumer都属于一个consumer group,每条消息只能被consumer group中的一个Consumer消费, 但可以被多个consumer group消费。即组间数据是共享的,组内数据是竞争的。二、消费模型…...
任务交给谁?委派模式告诉你最佳选择!
文章目录 一、概念二、角色三、代码实现四、委派模式在源码中的体现五、委派模式的优缺点优点缺点 一、概念 委派模式(Delegate Pattern)又叫委托模式,是一种面向对象的设计模式。委派模式是一种行为模式,不属于GOF23种设计模式之中基本作用…...

【JavaEE】Servlet(创建Maven、引入依赖、创建目录、编写及打包、部署和验证、smart Tomcat)
一、什么是Servlet? Servlet 是一种实现动态页面的技术. 是一组 Tomcat 提供给程序猿的 API, 帮助程序猿简单高效的开发一个 web app 1.1 Servlet能干什么? 🚕允许程序猿注册一个类, 在 Tomcat 收到某个特定的 HTTP 请求的时候, 执行这个类…...

降低城市内涝风险,万宾科技内涝积水监测仪的作用
频繁的内涝会削弱和损坏城市的关键基础设施,包括道路、桥梁和公用设施。城市内涝风险降低可以减少交通中断事件,也可以保护居民安全并降低路面维修等成本,进一步确保城市基本服务继续发挥作用。对城市可持续发展来讲有效减少内涝的风险是重要…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...

Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...

R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
LRU 缓存机制详解与实现(Java版) + 力扣解决
📌 LRU 缓存机制详解与实现(Java版) 一、📖 问题背景 在日常开发中,我们经常会使用 缓存(Cache) 来提升性能。但由于内存有限,缓存不可能无限增长,于是需要策略决定&am…...
2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案
一、延迟敏感行业面临的DDoS攻击新挑战 2025年,金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征: AI驱动的自适应攻击:攻击流量模拟真实用户行为,差异率低至0.5%,传统规则引…...
【题解-洛谷】P10480 可达性统计
题目:P10480 可达性统计 题目描述 给定一张 N N N 个点 M M M 条边的有向无环图,分别统计从每个点出发能够到达的点的数量。 输入格式 第一行两个整数 N , M N,M N,M,接下来 M M M 行每行两个整数 x , y x,y x,y,表示从 …...
C/Python/Go示例 | Socket Programing与RPC
Socket Programming介绍 Computer networking这个领域围绕着两台电脑或者同一台电脑内的不同进程之间的数据传输和信息交流,会涉及到许多有意思的话题,诸如怎么确保对方能收到信息,怎么应对数据丢失、被污染或者顺序混乱,怎么提高…...
ubuntu清理垃圾
windows和ubuntu 双系统,ubuntu 150GB,开发用,基本不装太多软件。但是磁盘基本用完。 1、查看home目录 sudo du -h -d 1 $HOME | grep -v K 上面的命令查看$HOME一级目录大小,发现 .cache 有26GB,.local 有几个GB&am…...

联邦学习带宽资源分配
带宽资源分配是指在网络中如何合理分配有限的带宽资源,以满足各个通信任务和用户的需求,尤其是在多用户共享带宽的情况下,如何确保各个设备或用户的通信需求得到高效且公平的满足。带宽是网络中的一个重要资源,通常指的是单位时间…...