当前位置: 首页 > news >正文

[代码实战和详解]VGG16

VGG16 详解

我的github代码实现:vgg16
VGG16
我们在vgg16神经网络上训练了SIGNS数据集,这是一个分类的数据集,在我的github上有介绍怎么下载数据集以及如何训练。

VGG16是一个卷积神经网络(CNN)架构,它在2014年的ILSVR(Imagenet)比赛中获胜。它被认为是迄今为止最优秀的视觉模型之一。VGG16最独特的地方在于,它不是使用大量的超参数,而是专注于使用3x3过滤器的卷积层,步幅为1,并始终使用相同的填充和2x2过滤器的最大池层。它始终在整个架构中一致地遵循这种卷积和最大池层的排列方式。最后,它有2个全连接层,后跟一个softmax输出。

VGG16网络使用pytorch实现

class VGG16(nn.Module):def __init__(self, num_classes=6):super(VGG16, self).__init__()self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(64, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(64, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(128, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(128, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(256, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2))self.avgpool = nn.AdaptiveAvgPool2d((7, 7))self.classifier = nn.Sequential(nn.Linear(512 * 7 * 7, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 1000),nn.Linear(1000, num_classes),)def forward(self, x):x = self.features(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.classifier(x)return x

相关文章:

[代码实战和详解]VGG16

VGG16 详解 我的github代码实现:vgg16 我们在vgg16神经网络上训练了SIGNS数据集,这是一个分类的数据集,在我的github上有介绍怎么下载数据集以及如何训练。 VGG16是一个卷积神经网络(CNN)架构,它在2014年…...

x3daudio1_7.dll错误:解决方法和丢失原因及作用

x3daudio1_7.dll是Windows操作系统中的一个动态链接库(DLL)文件,主要作用是为DirectX音频提供支持。DirectX是微软推出的一套多媒体应用程序开发接口,广泛应用于游戏、多媒体制作等领域。x3daudio1_7.dll文件包含了许多与三维音频…...

pipeline + node +jenkins+kubernetes部署yarn前端项目

1、编写Dockerfile文件 # Set the base image FROM node:16.10.0# WORKDIR /usr/src/app/ WORKDIR /home/option# Copy files COPY ./ /home/option/# Build arguments LABEL branch${BRANCH} LABEL commit${COMMIT} LABEL date${BUILD_DATE} ARG ENV# Set ENV variables ENV …...

计算机网络中的面向连接与无连接

目录 面向连接和无连接在计算机网络中是如何理解的面向连接和无连接的通信在路由选择上有哪些区别 面向连接和无连接在计算机网络中是如何理解的 在计算机网络中,面向连接和无连接是两种核心的网络通信方式,它们决定了数据包如何传输和接收。 面向连接&…...

EventEmitter3在vue中的使用

前提 vue中的组件传递方式有很多,包括父子组件之间的传值(props,emit)、事件总线($ bus)、状态管理模式(vuex,pinia),现在推荐一种可以替代$bus的一种传值方…...

双剑合璧:基于Elasticsearch的两路召回语义检索系统,实现关键字与语义的高效精准匹配

搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术细节以及项目实战(含码源) 专栏详细介绍:搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术…...

LeetCode34-34. 在排序数组中查找元素的第一个和最后一个位置

&#x1f517;:代码随想录:二分查找的算法讲解:有关left<right和left<right的区别 class Solution {public int[] searchRange(int[] nums, int target) {int nnums.length;int l0,hn-1;if(numsnull){return null; }if(n0){return new int[]{-1,-1}; }if(target&l…...

ddrnet 分割学习笔记

目录 修改后可以加载预训练: 训练自己的数据代码: 默认分割后特征下采样8倍,最后用上采样恢复到原图; 修改后可以加载预训练: import math import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.nn import init from …...

Outlook关闭过去事件的提醒

Outlook关闭过去事件的提醒 故障现象 最近Outlook中推出的新功能让我们可以选择自动关闭过去事件的提醒。 目前这个功能暂时只向当月通道的Office 365 订阅者发布。 这些用户升级到1810版本后&#xff0c;可以在不想收到已发生事件提醒的时候通过下面的步骤自动忽略过去事件…...

git 简单入门

git init touch test.txt git add test.txt git commit -m 初始化 仓库 git log //查找日志 git checkout -b dev //创建并切换dev分支 git branch // 查找分支 此时有master 和 dev分支&#xff0c; 此时在dev分支 dev分支也有test.txt文件 vim test.txt //写入dev …...

只有开源才能拯救AI

导语 | 随着 AI 技术的蓬勃发展&#xff0c;大模型的开源化正成为人工智能领域的新潮流&#xff0c;但同时引发的伦理和安全风险也饱受大家关注&#xff0c;如何把握平衡其中的尺度成为开源的一大难题。我们又应该如何有效进行开源治理&#xff1f;未来将走向何方&#xff1f;今…...

在Spring Boot中使用进程内缓存和Cache注解

在Spring Boot中使用内缓存的时候需要预先知道什么是内缓存&#xff0c;使用内缓存的好处。 什么是内缓存 内缓存&#xff08;也称为进程内缓存或本地缓存&#xff09;是指将数据存储在应用程序的内存中&#xff0c;以便在需要时快速访问和检索数据&#xff0c;而无需每次都从…...

YOLOv5项目实战(3)— 如何批量命名数据集中的图片

前言:Hello大家好,我是小哥谈。本节课就教大家如何去批量命名数据集中的图片,希望大家学习之后可以有所收获!~🌈 前期回顾: YOLOv5项目实战(1)— 如何去训练模型 YOLOv5项目实战(2࿰...

React + hooks + Ts 实现将后端响应的文件流(如Pdf)输出到浏览器下载

React 篇 一些关于react 学习与总结 这篇是记录开发中关于实现将后端响应的文件流&#xff08;如Pdf&#xff09;输出到浏览器下载&#xff0c;基于React Hooks Ts。 开发场景&#xff1a; 实现将后端响应的文件流&#xff08;如Pdf&#xff09;输出到浏览器下载&#xff0c;…...

大数据基础设施搭建 - JDK

一、创建目录 需要在root账号下操作&#xff0c;因为/目录下只能用root账号创建目录 1.1 创建目录 [roothadoop102 ~]# mkdir /opt/software/ [roothadoop102 ~]# mkdir /opt/module/1.2 修改权限 修改module、software文件夹的所有者和所属组均为hadoop用户&#xff0c;远程使…...

从0到0.01入门React | 010.精选 React 面试题

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…...

Docker启动SRS流媒体服务器

一、安装Docker 1.1、下载windows桌面版Windows 1.2、配置镜像 镜像加速器镜像加速器地址Docker 中国官方镜像https://registry.docker-cn.comDaoCloud 镜像站http://f1361db2.m.daocloud.ioAzure 中国镜像https://dockerhub.azk8s.cn科大镜像站https://docker.mirrors.ustc…...

php+MySQL防止sql注入

1、使用预处理语句&#xff08;Prepared Statements&#xff09;&#xff1a;预处理语句能够防止攻击者利用用户输入来篡改SQL语句&#xff0c;同时也能提高执行效率。通过将用户的输入参数与SQL语句分离&#xff0c;确保参数以安全的方式传递给数据库引擎&#xff0c;避免拼接…...

git 删除远程非主分支

git删除远程分支问题及git批量删除已合并的远程分支 - joshua317的博客 git push origin --delete branch-name 本版本Gitlab没有设置按钮&#xff0c;所以不能在网页上删除项目。但是可以在本地使用上述命令来删除远程仓库中非主分支的分支。 测试过不论在哪个分支操作都可…...

【MySQL学习】C++外部调用

#include "mysql.h" MYSQL *mysql; MYSQL_RES *rec; MYSQL_ROW row; &#xff08;1&#xff09;连接 char *server "localhost"; char *user "root"; char *password "hello"; char *database "mysql"; mysql mysql_i…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...