[代码实战和详解]VGG16
VGG16 详解
我的github代码实现:vgg16
我们在vgg16神经网络上训练了SIGNS数据集,这是一个分类的数据集,在我的github上有介绍怎么下载数据集以及如何训练。
VGG16是一个卷积神经网络(CNN)架构,它在2014年的ILSVR(Imagenet)比赛中获胜。它被认为是迄今为止最优秀的视觉模型之一。VGG16最独特的地方在于,它不是使用大量的超参数,而是专注于使用3x3过滤器的卷积层,步幅为1,并始终使用相同的填充和2x2过滤器的最大池层。它始终在整个架构中一致地遵循这种卷积和最大池层的排列方式。最后,它有2个全连接层,后跟一个softmax输出。
VGG16网络使用pytorch实现
class VGG16(nn.Module):def __init__(self, num_classes=6):super(VGG16, self).__init__()self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(64, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(64, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(128, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(128, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(256, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2))self.avgpool = nn.AdaptiveAvgPool2d((7, 7))self.classifier = nn.Sequential(nn.Linear(512 * 7 * 7, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 1000),nn.Linear(1000, num_classes),)def forward(self, x):x = self.features(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.classifier(x)return x
相关文章:

[代码实战和详解]VGG16
VGG16 详解 我的github代码实现:vgg16 我们在vgg16神经网络上训练了SIGNS数据集,这是一个分类的数据集,在我的github上有介绍怎么下载数据集以及如何训练。 VGG16是一个卷积神经网络(CNN)架构,它在2014年…...

x3daudio1_7.dll错误:解决方法和丢失原因及作用
x3daudio1_7.dll是Windows操作系统中的一个动态链接库(DLL)文件,主要作用是为DirectX音频提供支持。DirectX是微软推出的一套多媒体应用程序开发接口,广泛应用于游戏、多媒体制作等领域。x3daudio1_7.dll文件包含了许多与三维音频…...

pipeline + node +jenkins+kubernetes部署yarn前端项目
1、编写Dockerfile文件 # Set the base image FROM node:16.10.0# WORKDIR /usr/src/app/ WORKDIR /home/option# Copy files COPY ./ /home/option/# Build arguments LABEL branch${BRANCH} LABEL commit${COMMIT} LABEL date${BUILD_DATE} ARG ENV# Set ENV variables ENV …...
计算机网络中的面向连接与无连接
目录 面向连接和无连接在计算机网络中是如何理解的面向连接和无连接的通信在路由选择上有哪些区别 面向连接和无连接在计算机网络中是如何理解的 在计算机网络中,面向连接和无连接是两种核心的网络通信方式,它们决定了数据包如何传输和接收。 面向连接&…...
EventEmitter3在vue中的使用
前提 vue中的组件传递方式有很多,包括父子组件之间的传值(props,emit)、事件总线($ bus)、状态管理模式(vuex,pinia),现在推荐一种可以替代$bus的一种传值方…...

双剑合璧:基于Elasticsearch的两路召回语义检索系统,实现关键字与语义的高效精准匹配
搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术细节以及项目实战(含码源) 专栏详细介绍:搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术…...

LeetCode34-34. 在排序数组中查找元素的第一个和最后一个位置
🔗:代码随想录:二分查找的算法讲解:有关left<right和left<right的区别 class Solution {public int[] searchRange(int[] nums, int target) {int nnums.length;int l0,hn-1;if(numsnull){return null; }if(n0){return new int[]{-1,-1}; }if(target&l…...
ddrnet 分割学习笔记
目录 修改后可以加载预训练: 训练自己的数据代码: 默认分割后特征下采样8倍,最后用上采样恢复到原图; 修改后可以加载预训练: import math import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.nn import init from …...

Outlook关闭过去事件的提醒
Outlook关闭过去事件的提醒 故障现象 最近Outlook中推出的新功能让我们可以选择自动关闭过去事件的提醒。 目前这个功能暂时只向当月通道的Office 365 订阅者发布。 这些用户升级到1810版本后,可以在不想收到已发生事件提醒的时候通过下面的步骤自动忽略过去事件…...
git 简单入门
git init touch test.txt git add test.txt git commit -m 初始化 仓库 git log //查找日志 git checkout -b dev //创建并切换dev分支 git branch // 查找分支 此时有master 和 dev分支, 此时在dev分支 dev分支也有test.txt文件 vim test.txt //写入dev …...

只有开源才能拯救AI
导语 | 随着 AI 技术的蓬勃发展,大模型的开源化正成为人工智能领域的新潮流,但同时引发的伦理和安全风险也饱受大家关注,如何把握平衡其中的尺度成为开源的一大难题。我们又应该如何有效进行开源治理?未来将走向何方?今…...

在Spring Boot中使用进程内缓存和Cache注解
在Spring Boot中使用内缓存的时候需要预先知道什么是内缓存,使用内缓存的好处。 什么是内缓存 内缓存(也称为进程内缓存或本地缓存)是指将数据存储在应用程序的内存中,以便在需要时快速访问和检索数据,而无需每次都从…...

YOLOv5项目实战(3)— 如何批量命名数据集中的图片
前言:Hello大家好,我是小哥谈。本节课就教大家如何去批量命名数据集中的图片,希望大家学习之后可以有所收获!~🌈 前期回顾: YOLOv5项目实战(1)— 如何去训练模型 YOLOv5项目实战(2...
React + hooks + Ts 实现将后端响应的文件流(如Pdf)输出到浏览器下载
React 篇 一些关于react 学习与总结 这篇是记录开发中关于实现将后端响应的文件流(如Pdf)输出到浏览器下载,基于React Hooks Ts。 开发场景: 实现将后端响应的文件流(如Pdf)输出到浏览器下载,…...
大数据基础设施搭建 - JDK
一、创建目录 需要在root账号下操作,因为/目录下只能用root账号创建目录 1.1 创建目录 [roothadoop102 ~]# mkdir /opt/software/ [roothadoop102 ~]# mkdir /opt/module/1.2 修改权限 修改module、software文件夹的所有者和所属组均为hadoop用户,远程使…...

从0到0.01入门React | 010.精选 React 面试题
🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…...

Docker启动SRS流媒体服务器
一、安装Docker 1.1、下载windows桌面版Windows 1.2、配置镜像 镜像加速器镜像加速器地址Docker 中国官方镜像https://registry.docker-cn.comDaoCloud 镜像站http://f1361db2.m.daocloud.ioAzure 中国镜像https://dockerhub.azk8s.cn科大镜像站https://docker.mirrors.ustc…...
php+MySQL防止sql注入
1、使用预处理语句(Prepared Statements):预处理语句能够防止攻击者利用用户输入来篡改SQL语句,同时也能提高执行效率。通过将用户的输入参数与SQL语句分离,确保参数以安全的方式传递给数据库引擎,避免拼接…...
git 删除远程非主分支
git删除远程分支问题及git批量删除已合并的远程分支 - joshua317的博客 git push origin --delete branch-name 本版本Gitlab没有设置按钮,所以不能在网页上删除项目。但是可以在本地使用上述命令来删除远程仓库中非主分支的分支。 测试过不论在哪个分支操作都可…...
【MySQL学习】C++外部调用
#include "mysql.h" MYSQL *mysql; MYSQL_RES *rec; MYSQL_ROW row; (1)连接 char *server "localhost"; char *user "root"; char *password "hello"; char *database "mysql"; mysql mysql_i…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...

20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...

使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
Python竞赛环境搭建全攻略
Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型(算法、数据分析、机器学习等)不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...