OpenCV中的像素重映射原理及实战分析
引言
映射是个数学术语,指两个元素的集之间元素相互“对应”的关系,为名词。映射,或者射影,在数学及相关的领域经常等同于函数。 基于此,部分映射就相当于部分函数,而完全映射相当于完全函数。
说的简单点,每个人都有一个名字,都有身份证号,人对应人名字,对应自己的身份证号,这种对应关系就叫映射。
一、什么是像素重映射
把一个图像中一个位置的像素放置到另一个图片指定位置的过程就是像素重映射。
为了完成映射过程, 有必要获得一些插值为非整数像素坐标,因为源图像与目标图像的像素坐标不是一一对应的.
简单的说就是改变图片的位置(左,右,上,下,颠倒)
for example (举个栗子):g(x, y)=f(h(x,y))。 这里g()是目标图像,f()是原图像,h(x,y)是作用于(x,y)的映射方法函数。假设有一幅图像I,满足后面条件作重映射: h(x,y)=(I.cols - x,y)这个公式是有点绕哈,有些对数学不感冒的童鞋可以看一下这个图

没错,就是轴对称,左右翻转。 这就是数学的魅力。我们一起来体验一下。
二、像素重映射API — remap()
下面是函数原型:
cv::remap (
InputArray src,
OutputArray dst,
InputArray map1,
InputArray map2,
int interpolation,
int borderMode = BORDER_CONSTANT,
const Scalar borderValue = Scalar()
)
函数各个参数的解释:
第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可,且需为单通道8位或者浮点型图像。
第二个参数,OutputArray类型的dst,函数调用后的运算结果存在这里,即这个参数用于存放函数调用后的输出结果,需和源图片有一样的尺寸和类型
第三个参数,InputArray类型的map1,它有两种可能的表示对象。表示点(x,y)的第一个映射。表示CV_16SC2 , CV_32FC1 或CV_32FC2类型的X值。
第四个参数,InputArray类型的map2,同样,它也有两种可能的表示对象,而且他是根据map1来确定表示那种对象。若map1表示点(x,y)时。这个参数不代表任何值。表示CV_16UC1 , CV_32FC1类型的Y值(第二个值)。
第五个参数,int类型的interpolation,插值方式,之前的resize( )函数中有讲到,需要注意,resize( )函数中提到的INTER_AREA插值方式在这里是不支持的,所以可选的插值方式如下:INTER_NEAREST - 最近邻插值INTER_LINEAR – 双线性插值(默认值)INTER_CUBIC – 双三次样条插值(逾4×4像素邻域内的双三次插值)INTER_LANCZOS4 -Lanczos插值(逾8×8像素邻域的Lanczos插值)
第六个参数,int类型的borderMode,边界模式,有默认值BORDER_CONSTANT,表示目标图像中“离群点(outliers)”的像素值不会被此函数修改。
第七个参数,const Scalar&类型的borderValue,当有常数边界时使用的值,其有默认值Scalar( ),即默认值为0。
三、实战
参数函数
首先我们要先考虑,我们要做的情况有如下四种:缩小(行与列均为原来的1/2),左右翻转,上下翻转,中心旋转。下面的图表示的就是四种变换模式:

最简单的是翻转了,行不变,第一列跟最后一列转换,第二列跟倒数第二列转换……这样就实现了左右翻转。同理,列不变,行转换,实现上下翻转。如果上下左右都翻转,那就是旋转180°,也就是中心旋转啦。
还有一个就是图像缩小,图像缩小就是将长跟宽变换为原来的1/2。所以只在图像的1/4处到3/4处有新图像。将图像范围控制在0原图像的0.25-0.75之间,其他的全部为0;设置图像的x和y方向的映射。对于x方向,是列的映射。图像的每个像素点,减去原图像的1/4,再×2,就表示图像缩小1/2.不过,经过我自己的实践发现,图像宽,高缩小一半不能再后面+0.5,应该是列不加,行-0.25。
void updata_map() {for (int row = 0; row < img.rows; row++){for (int col = 0; col < img.cols; col++){switch (index){//index = 0 ,图像的行跟列为为原来的1/2。//index = 1,为左右翻转(列变换,行不变)//index = 2,为上下翻转(行变换,列不变)//index = 3,为中心旋转case 0:if (col > (img.cols*0.25) && col<(img.cols*0.75) && row>(img.rows*0.25) && row < (img.rows*0.75)) {map_x.at<float>(row, col) = 2 * (col - (img.cols*0.25));map_y.at<float>(row, col) = 2 * (row - (img.rows*0.25) - 0.25);}else{map_x.at<float>(row, col) = 0;map_y.at<float>(row, col) = 0;}break;case 1:map_x.at<float>(row, col) = (img.cols - col - 1);map_y.at<float>(row, col) = row;break;case 2:map_x.at<float>(row, col) = col;map_y.at<float>(row, col) = (img.rows - row - 1);break;case 3:map_x.at<float>(row, col) = (img.cols - col - 1);map_y.at<float>(row, col) = (img.rows - row - 1);break;default:break;}}
}
效果如下图所示:

x和y都加上0.5
x和y都不加0.5
x不加,y-0.25
完整代码
#define INPUT_TITLE "input image"
#define OUTPUT_TITLE "remap image"#include<iostream>
#include<opencv2\opencv.hpp>using namespace std;
using namespace cv;Mat img, src;//img 输入图像 ; src 最终输出的图像
Mat map_x, map_y;
int index = 0;
void updata_map();int main() {img = imread("D:/测试程序/image/circle1.bmp");if (!img.data){cout << "ERROR : could not load image.";return -1;}namedWindow(INPUT_TITLE, CV_WINDOW_AUTOSIZE);namedWindow(OUTPUT_TITLE, CV_WINDOW_AUTOSIZE);imshow(INPUT_TITLE, img);//建立映射表map_x.create(img.size(), CV_32FC1);map_y.create(img.size(), CV_32FC1);int c = 0;while (true){c = waitKey(500);index = c % 4;if ((char)c == 27){break;}updata_map();remap(img, src, map_x, map_y, INTER_LINEAR, BORDER_CONSTANT, Scalar(0, 0, 255));imshow(OUTPUT_TITLE, src);}return 0;
}void updata_map() {for (int row = 0; row < img.rows; row++){for (int col = 0; col < img.cols; col++){switch (index){//index = 0 ,图像的行跟列为为原来的1/2。//index = 1,为左右翻转(列变换,行不变)//index = 2,为上下翻转(行变换,列不变)//index = 3,为中心旋转case 0:if (col > (img.cols*0.25) && col<(img.cols*0.75) && row>(img.rows*0.25) && row < (img.rows*0.75)) {map_x.at<float>(row, col) = 2 * (col - (img.cols*0.25));map_y.at<float>(row, col) = 2 * (row - (img.rows*0.25)-0.25);}else{map_x.at<float>(row, col) = 0;map_y.at<float>(row, col) = 0;}break;case 1:map_x.at<float>(row, col) = (img.cols - col - 1);map_y.at<float>(row, col) = row;break;case 2:map_x.at<float>(row, col) = col;map_y.at<float>(row, col) = (img.rows - row - 1);break;case 3:map_x.at<float>(row, col) = (img.cols - col - 1);map_y.at<float>(row, col) = (img.rows - row - 1);break;default:break;}}}
}
效果图




相关文章:
OpenCV中的像素重映射原理及实战分析
引言 映射是个数学术语,指两个元素的集之间元素相互“对应”的关系,为名词。映射,或者射影,在数学及相关的领域经常等同于函数。 基于此,部分映射就相当于部分函数,而完全映射相当于完全函数。 说的简单点…...
如何快速搭建Spring Boot接口调试环境并实现公网访问
文章目录 前言1. 本地环境搭建1.1 环境参数1.2 搭建springboot服务项目 2. 内网穿透2.1 安装配置cpolar内网穿透2.1.1 windows系统2.1.2 linux系统 2.2 创建隧道映射本地端口2.3 测试公网地址 3. 固定公网地址3.1 保留一个二级子域名3.2 配置二级子域名3.2 测试使用固定公网地址…...
简单的用Python实现一下,采集某牙视频,多个视频翻页下载
前言 表弟自从学会了Python,每天一回家就搁那爬视频,不知道的以为是在学习,结果我昨天好奇看了一眼,好家伙,在那爬某牙舞蹈区,太过分了! 为了防止表弟做坏事,我连忙找了个凳子坐下&…...
【手撕数据结构】二分查找(好多细节)
🌈键盘敲烂,年薪30万🌈 目录 普通版本的二分查找: right只负责控制边界(少了两次比较): 时间复杂度更稳定的版本: BSLeftmost: BSRightmost: 普通版本的二分查找: …...
Python+Selenium WebUI自动化框架 -- 基础操作封装
前言: 封装Selenium基本操作,让所有页面操作一键调用,让UI自动化框架脱离高成本、低效率时代,将用例的重用性贯彻到极致,让烦人的PO模型变得无所谓,让一个测试小白都能编写并实现自动化。 知识储备前提&a…...
PyCharm 【unsupported Python 3.1】
PyCharm2020.1版本,当添加虚拟环境发生异常: 原因:Pycharm版本低了!不支持配置的虚拟环境版本 解决:下载PyCharm2021.1版本,进行配置成功!...
flutter TabBar指示器
第一层tabView import package:jade/configs/PathConfig.dart; import package:jade/customWidget/MyCustomIndicator.dart; importpackage:jade/homePage/promotion/promotionPost/MyPromotionListMainDesc.dart; import package:jade/homePage/promotion/promotionPost/MyPr…...
PDF/X、PDF/A、PDF/E:有什么区别,为什么有这么多格式?
PDF 是一种通用文件格式,允许用户演示和共享文档,无论软件、硬件或操作系统如何。多年来,已经创建了多种 PDF 子类型来满足各个行业的不同需求。让我们看看一些最流行的格式:PDF/X、PDF/A 和 PDF/E。 FastReport .net下载 PDF/X …...
Microsoft发布了一份关于其产品安全修复的 11 月报告。
👾 平均每天有 50 多个漏洞被发现,其中一些会立即被网络犯罪分子利用。我们把那些现在很受网络犯罪分子欢迎,或者根据我们的预测,在不久的将来可能会被大量利用的漏洞称为趋势漏洞。 在攻击者开始利用这些漏洞之前 12 小时&#…...
12v24v60v高校同步降压转换芯片推荐
12V/24V/60V 高校同步降压转换芯片推荐: 对于需要高效、稳定、低噪音的降压转换芯片,推荐使用WD5030E和WD5105。这两款芯片都是采用同步整流技术,具有高效率、低噪音、低功耗等优点,适用于各种电子设备。 WD5030E是一款高效率…...
pip 问题
升级pip命令: python -m pip install --upgrade pippip不能下载pytorch: 这个问题我一直没解决。不知道有哪位大佬可以留言给我。把whl文件下载到本地也没有,pip不会进行本地文件夹搜索。...
云计算(一):弹性计算概述
云计算(一):弹性计算概述 背景含义原理应用 背景 在实际场景中,经常会出现短时间内资源需求爆发式增长或长时间内资源需求不断增长,这时需要资源供给时刻满足需求的变化,保障业务正常运行。传统的供给方式…...
Qt/C++ 获取QProcess启动的第三方软件的窗体标题
Qt/C 获取QProcess启动的第三方软件的窗体标题,在使用EnumWindows获取窗体句柄(HWND)时,如果返回提前FALSE,则获取到的HWND状态IsWindow正常,但就是获取不到窗体标题。必须正常返回TRUE才能使用HWND获取到窗体标题,要不…...
Borland编辑器DOS系统快捷键应用
在项目中接触到DOS系统,该系统距离当下已经接近20年时间,网络上资源较少,因为需要用到C语言编辑器BorlandC,每次应用时难免会忘记快捷键使用,给使用造成很大的不便。 于是把现有收集的快捷键做出整理便于使用,供大家参…...
KeyarchOS的CentOS迁移实践:使用操作系统迁移工具X2Keyarch V2.0
KeyarchOS的CentOS迁移实践:使用操作系统迁移工具X2Keyarch V2.0 作者: 猫头虎博主 文章目录 KeyarchOS的CentOS迁移实践:使用操作系统迁移工具X2Keyarch V2.0🐅摘要引言1. 迁移前的精心准备1.1 系统环境介绍1.2 深度数据验证1.2.…...
Golang抓包:实现网络数据包捕获与分析
介绍 在网络通信中,网络数据包是信息传递的基本单位。抓包是一种监控和分析网络流量的方法,用于获取网络数据包并对其进行分析。在Golang中,我们可以借助现有的库来实现抓包功能,进一步对网络数据进行分析和处理。 本文将介绍如…...
分类预测 | Matlab实现QPSO-SVM、PSO-SVM、SVM多特征分类预测对比
分类预测 | Matlab实现QPSO-SVM、PSO-SVM、SVM多特征分类预测对比 目录 分类预测 | Matlab实现QPSO-SVM、PSO-SVM、SVM多特征分类预测对比分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现QPSO-SVM、PSO-SVM、SVM分类预测对比,运行环境Matlab2018b…...
kubernetes部署jenkins
参考:kubernetes 部署 Jenkins jenkins kubernetes pipeline_mob64ca14116c53的技术博客_51CTO博客 第七篇:kubernetes部署jenkins-CSDN博客 1、当前kubernetes集群已部署nfs服务 showmount -e 创建jenkins目录 2、添加jenkins的pvc kubectl create …...
Node.js详解
一、是什么 Node.js 是一个开源与跨平台的 JavaScript 运行时环境 在浏览器外运行 V8 JavaScript 引擎(Google Chrome 的内核),利用事件驱动、非阻塞和异步输入输出模型等技术提高性能 可以理解为 Node.js 就是一个服务器端的、非阻塞式I/…...
v-html命令渲染的内容,使用scoped属性的情况下,样式不起作用
v-html命令渲染的内容,使用scoped属性的情况下,样式不起作用 如: CSS: <style scoped> .question_title_text img{ display: block; height: 200px; margin: 10px auto 0 auto;} </style> HTML: <d…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
