当前位置: 首页 > news >正文

【机器学习7】优化算法

1 有监督学习的损失函数

1.1 分类问题

对二分类问题, Y={1,−1}, 我们希望sign f(xi,θ)=yi, 最自然的损失函数是0-1损失,

函数定义特点
0-1损失函数函数定义非凸、非光滑,很难直接对该函数进行优化
Hinge损失函数当fy≥1时, 该函数不对其做任何惩罚。 Hinge损失在fy=1处不可导, 因此不能用梯度下降法进行优化, 而是用次梯度下降法
Logistic损失函数该损失函数对所有的样本点都有所惩罚, 因此对异常值相对更敏感一些
交叉熵损失函数在这里插入图片描述

损失函数曲线

1.2回归问题

希望 在这里插入图片描述, 最常用的损失函数是平方损失函数

函数定义特点
平方损失函数在这里插入图片描述对异常点比较敏感
绝对损失函数在这里插入图片描述在f=y处无法求导数
Huber损失函数在这里插入图片描述

在这里插入图片描述

2 梯度下降法

梯度下降算法发展过程

3 L1正则化与稀疏性

稀疏性,就是模型中的很多参数为0,相当于对模型进行了特征选择,只留下了重要的特征。提高了模型的泛化能力,降低了过拟合的可能。
为什么L1正则化能让模型具有稀疏性?

3.1 从解空间形状来看

在这里插入图片描述
黄色的部分是L2和L1正则项约束后的解空间, 绿色的等高线是凸优化问题中目标函数的等高线,L2正则项约束后的解空间是圆形, 而L1正则项约束的解空间是多边形。显然, 多边形的解空间更容易在尖角处与等高线碰撞出稀疏解。

3.2 从函数叠加来看

在这里插入图片描述
首先, 考虑加上L2正则化项, 目标函数变成L(w)+Cw2, 其函数曲线为黄色。此时, 最小值点在黄点处, 对应的w*的绝对值减小了, 但仍然非0。
然后, 考虑加上L1正则化项, 目标函数变成L(w)+C|w|, 其函数曲线为绿色。此时, 最小值点在红点处, 对应的w是0, 产生了稀疏性。

在一些在线梯度下降算法中, 往往会采用截断梯度法来产生稀疏性, 这同L1正则项产生稀疏性的原理是类似的。

3.3从贝叶斯实验来看

从贝叶斯的角度来理解L1正则化和L2正则化, 简单的解释是, L1正则化相当于对模型参数w引入了拉普拉斯先验, L2正则化相当于引入了高斯先验, 而拉普拉斯先验使参数为0的可能性更大。

相关文章:

【机器学习7】优化算法

1 有监督学习的损失函数 1.1 分类问题 对二分类问题, Y{1,−1}, 我们希望sign f(xi,θ)yi, 最自然的损失函数是0-1损失, 函数定义特点0-1损失函数非凸、非光滑,很难直接对该函数进行优化Hinge损失函数当fy≥1时&…...

常见的近似算法

前言 最近有个项目要用到近似算法,就到处摸了下,整理了一个小结。 近似算法统计 在Java中,你可以使用各种近似算法来解决不精确但接近于最优解的问题。以下是几种常见的近似算法的实现方法: 贪心算法(Greedy Algori…...

【完整详细】IntelliJ IDEA中使用Docker插件一键部署前后端分离项目

前言:在使用Docker部署我们的前后端分离项目的时候,会涉及到一堆且重复的Docker命令,久而久之就会被这些重复性的操作感到繁琐,本篇博客教学大家如何通过IDEA自带的一款插件就可以实现一键部署前后端分离项目的操作,从头到尾我写的非常详细,大家逐步阅读即可。 博主的其他…...

ubuntu20.04 安装TensorRT,解决依赖问题

1.下载Tensor RT对应的deb包 先要确保cuda和cudnn安装好,https://blog.csdn.net/qq_41246375/article/details/115597025 下载tensor RT,注意版本对应关系 https://developer.nvidia.com/nvidia-tensorrt-8x-download 2.安装 按照官方步骤 https://d…...

你知道如何科学的学习吗?-关于个人成长的思考

背景 最近在翻看自己工作后的笔记,从有道云笔记到印象笔记,到本地笔记,到自己使用github搭建的博客,到语雀笔记,使用了不同的平台工具;零零总总记录了许多学习笔记、个人成长笔记、职业规划等内容。现在看…...

Java学习之路 —— 多线程

文章目录 1. 线程创建方式1.1 继承Thread1.2 声明一个实现Runnable接口的类1.3 利用Callable接口、FutureTask类来实现 2. 线程同步2.1 同步代码块2.2 同步方法2.3 Lock锁 3. 线程同步4. 线程池 1. 线程创建方式 1.1 继承Thread 定义子类,继承Thread,创…...

【云原生-Kurbernetes篇】K8s的存储卷/数据卷+PV与PVC

这是一个目录标题 一、Kurbernetes中的存储卷1.1 为什么需要存储卷?1.2 存储卷概述1.2.1 简介1.2.2 volume字段 1.3 常用的存储卷类型1.3.1 emptyDir(临时存储卷)1.3.2 hostPath(节点存储卷)1.3.3 nfs1.3.4 cephfs 二、…...

二层、三层交换机之间到底有什么区别?

简单地说 二层交换机,没有充当三层网关角色的能力(Capability)。三层交换机,首先也是二层交换机。但是,它有一个额外的能力(Capability),软件配置一下,可以充当三层网关…...

【论文阅读】2736. 最大和查询-2023.11.17

题目: 2736. 最大和查询 给你两个长度为 n 、下标从 0 开始的整数数组 nums1 和 nums2 ,另给你一个下标从 1 开始的二维数组 queries ,其中 queries[i] [xi, yi] 。 对于第 i 个查询,在所有满足 nums1[j] > xi 且 nums2[j]…...

2. zk集群部署

简介 上一篇文章我们已经把环境准备好了,jdk也配置好了,下面我们开始把zk部署起来 hadoop环境准备 创建zk用户 useradd zk -d /home/zk echo "1q1w1e1r" | passwd --stdin zk上传zk包 拷贝zk包到/home/zk目录,这里的zk版本为 3.6.3 scp…...

抖音快手判断性别、年龄自动关注脚本,按键精灵开源代码!

这个是支持抖音和快手两个平台的,可以进入对方主页然后判断对方年龄和性别,符合条件的关注,不符合条件的跳过下一个ID,所以比较精准,当然你可以二次开发加入更多的平台,小红书之类的,仅供学习&a…...

IDEA软件使用步骤

1.IDEA概述 IDEA全称InelliJ IDEA,是用于java语言开发的集成环境,它是业界公认的目前用于Java程序开发最好的工具。 集成环境:把代码编写,编译,执行,调试扽过多种功能综合到一起的开发工具。 下载:https…...

设计模式-11-模板模式

经典的设计模式有23种,但是常用的设计模式一般情况下不会到一半,我们就针对一些常用的设计模式进行一些详细的讲解和分析,方便大家更加容易理解和使用设计模式。 1-什么是模板模式 模板模式,全称是模板方法设计模式,英…...

【技术分享】EIGRP stub实验

【赠送】IT技术视频教程,白拿不谢!思科、华为、红帽、数据库、云计算等等https://xmws-it.blog.csdn.net/article/details/117297837?spm1001.2014.3001.5502【微/信/公/众/号:厦门微思网络】 拓扑图: R1配置: route…...

Python 爬虫 AES DES加密反爬

当你遇到需要处理 AES 或 DES 加密的反爬虫机制时,Python 可以通过使用相应的库来解决这类问题。首先,我们需要理解 AES 和 DES 加密是什么: AES (Advanced Encryption Standard):一种广泛使用的对称加密算法,它使用相…...

(论文阅读30/100)Convolutional Pose Machines

30.文献阅读笔记CPMs 简介 题目 Convolutional Pose Machines 作者 Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh, CVPR, 2016. 原文链接 https://arxiv.org/pdf/1602.00134.pdf 关键词 Convolutional Pose Machines(CPMs)…...

vue3实现数据大屏内数据向上滚动,鼠标进入停止滚动 vue3+Vue3SeamlessScroll

1.效果图 2.npm下载依赖及main.js文件配置 npm install vue3-seamless-scroll --saveimport vue3SeamlessScroll from vue3-seamless-scroll;app.use(vue3SeamlessScroll) 3.html代码 <!-- scrollFlag为true时再渲染,vue3只要涉及到传值子页面需要加flag判断&#xff0c;否…...

WPF显示3D图形

C# 中的 WPF (Windows Presentation Foundation) 支持显示3D图形。WPF 使用 DirectX 作为底层图形引擎&#xff0c;这意味着它可以处理包括3D图形在内的复杂渲染任务。 在 WPF 中&#xff0c;你可以使用一些内置的类和控件来创建和显示3D对象。这包括 Viewport3D, Camera, Mod…...

Xrdp+Cpolar实现远程访问Linux Kali桌面

XrdpCpolar实现远程访问Linux Kali桌面 文章目录 XrdpCpolar实现远程访问Linux Kali桌面前言1. Kali 安装Xrdp2. 本地远程Kali桌面3. Kali 安装Cpolar 内网穿透4. 配置公网远程地址5. 公网远程Kali桌面连接6. 固定连接公网地址7. 固定地址连接测试 前言 Kali远程桌面的好处在于…...

赚钱

《赚钱》 作者&#xff0f;罗光记 赚钱劳身影未安&#xff0c; 岁月匆匆易逝难。 银钱到手笑颜开&#xff0c; 酒醉灯昏影独寒。 花前月下欢声起&#xff0c; 万金财富待来年。 诗酒飘香梦中笑&#xff0c; 人生何求更多钱。...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者&#xff1a;来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布&#xff0c;Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明&#xff0c;Elastic 作为 …...

【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统

Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...