当前位置: 首页 > news >正文

sklearn 笔记 BallTree/KD Tree

由NearestNeighbors类包装

1 主要使用方法

sklearn.neighbors.BallTree(X, leaf_size=40, metric='minkowski', **kwargs)
X数据集中的点数
leaf_size改变 leaf_size 不会影响查询的结果,但可以显著影响查询的速度和构建树所需的内存
metric用于距离计算的度量。默认为 "minkowski"

2 主要方法

2.1 get_arrays

import numpy as np
from sklearn.neighbors import BallTree
X = np.random.random((10, 3))
tree = BallTree(X)                
tree.get_arrays()'''
(array([[0.90651098, 0.68471698, 0.6299996 ],[0.82751465, 0.31739009, 0.61572299],[0.22778906, 0.63614041, 0.73672184],[0.64655758, 0.9729849 , 0.68232389],[0.94992886, 0.72604933, 0.45649069],[0.34932115, 0.95985124, 0.41451989],[0.45131894, 0.21650206, 0.82466273],[0.87047096, 0.48403116, 0.58119046],[0.94468825, 0.14985636, 0.12132986],[0.62717326, 0.12924198, 0.23928098]]),array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int64),array([(0, 10, 1, 0.61638879)],dtype=[('idx_start', '<i8'), ('idx_end', '<i8'), ('is_leaf', '<i8'), ('radius', '<f8')]),array([[[0.68012737, 0.52767645, 0.53022429]]]))
'''
  • 返回了4个数组
    • 第一个数组:原始数据点数组

    • 第二个数组:整数数组,代表每个点的索引

    • 第三个数组:结构化数组,包含了 BallTree 的内部树结构的信息

      • idx_startidx_end:定义了存储在当前节点的点的索引范围。
      • is_leaf:表明当前节点是否是叶节点。
      • radius:当前节点中所有点到节点中心点的最大距离
    • 第四个数组:树的每个节点的中心点

2.2 get_tree_stats

获取 BallTree 的状态信息:树的剪枝次数、叶节点的数量、分裂次数

2.3 query

查询树以找到 k 个最近邻居

query(X, k=1, return_distance=True, dualtree=False, breadth_first=False)
X要查询的点的数组
k

(int,默认为1)

要返回的最近邻居的数量

return_distance

(bool,默认为True)

如果为 True,返回一个包含距离和索引的元组 (d, i);

如果为 False,只返回数组 i

dualtree

(bool,默认为False):

如果为 True,使用双树形式进行查询:为查询点构建一个树,并使用这对树来高效地搜索这个空间当点的数量变得很大时,这可以带来更好的性能

breadth_first

(bool,默认为False)

如果为 True,则以广度优先的方式查询节点。否则,以深度优先的方式查询

sort_results

(bool,默认为True)

如果为 True,则在返回时对每个点的距离和索引进行排序,使得第一列包含最近的点

import numpy as np
from sklearn.neighbors import BallTree
X = np.random.random((100, 3))
tree = BallTree(X)                
tree.query(X[:3],k=3)
'''
(array([[0.        , 0.08335798, 0.15625817],[0.        , 0.06843236, 0.10825558],[0.        , 0.0968137 , 0.10245125]]),array([[ 0, 59, 88],[ 1, 70,  5],[ 2, 43, 20]], dtype=int64))
'''

2.4 query_radius

  • 进行半径查询的功能
  • 查询树,以找出在指定半径 r 内的邻居点
query_radius(X, r, return_distance=False, count_only=False, sort_results=False)
X要查询的点的数组
r

返回邻居的距离范围

r 可以是单个值,也可以是一个数组,形状为 x.shape[:-1],如果每个点需要不同的半径

return_distance

(bool,默认为False)

如果为 True,则返回每个点的邻居距离;如果为 False,则只返回邻居

query() 方法不同,这里设置 return_distance=True 会增加计算时间。如果 return_distance=False,并不需要显式计算所有距离

count_only

(bool,默认为False)

如果为 True,则只返回距离 r 内的点的数量;

如果为 False,则返回距离 r 内所有点的索引

sort_results

(bool,默认为False)

如果为 True,则在返回之前对距离和索引进行排序。如果为 False,则结果不排序

import numpy as np
from sklearn.neighbors import BallTree
X = np.random.random((100, 3))
tree = BallTree(X)                
tree.query_radius(X[:3],r=0.3)
'''
array([array([ 0, 68, 11, 31, 46, 19, 36, 63, 16, 86, 79], dtype=int64),array([26, 64, 20, 94,  1,  4, 13,  3], dtype=int64),array([35, 50, 30, 83, 85, 18, 15, 53,  2, 96, 81], dtype=int64)],dtype=object)
'''

2.5 two_point_correlation

计算距离小于等于r[i]的点的数量

two_point_correlation(X, r, dualtree=False)
X要查询的点集
r一维数组,包含距离值
dualtree

如果为 True,则使用双树算法;否则,使用单树算法。

对于大量数据点(N),双树算法可能有更好的扩展性

返回值

counts (ndarray): counts[i] 包含距离小于或等于 r[i] 的点对数

import numpy as np
from sklearn.neighbors import BallTree
X = np.random.random((100, 3))
r=np.linspace(0.1,1,5)
tree = BallTree(X)                
tree.two_point_correlation(X[:3],r=r)
#array([  4,  34,  99, 196, 263], dtype=int64)
'''
返回的第一个值:和X[0]的距离小于r[0]的数量+和X[1]的距离小于r[0]的数量+和X[2]的距离小于r[0]的数量
'''

3 KD-Tree

和Ball-Tree 一模一样

相关文章:

sklearn 笔记 BallTree/KD Tree

由NearestNeighbors类包装 1 主要使用方法 sklearn.neighbors.BallTree(X, leaf_size40, metricminkowski, **kwargs) X数据集中的点数leaf_size改变 leaf_size 不会影响查询的结果&#xff0c;但可以显著影响查询的速度和构建树所需的内存metric用于距离计算的度量。默认为…...

ConstraintLayout使用详解

作为一名程序员&#xff0c;可能会经历以下难受的事情&#xff1a; 解决难以调试的代码错误处理复杂的代码库和维护遗留代码修改已经存在很长时间的代码&#xff0c;需要考虑兼容性和稳定性长时间工作&#xff0c;缺乏身体运动和社交互动&#xff0c;导致压力和孤独感遇到不能…...

Java8Stream快速使用

将List集合存入流中 List<String> list new ArrayList<>();list.add("张一");list.add("张二");list.add("张三");list.add("李四");list.add("赵五");list.add("张六");list.add("王八"…...

work环境配置

1.计算机右键找到属性 2.配置环境变量 3.新加环境变量 4.修改环境变量path .bat文件内容 php ApplicationsChatstart_register.php ApplicationsChatstart_gateway.php ApplicationsChatstart_businessworker.php pause...

Flutter应用-使用sqflite升级数据库

文章目录 问题描述具体做法代码示例更多条件限制升级 数据库迁移和备份简介数据库迁移数据库备份 问题描述 使用fluttter开发的应用程序发布后&#xff0c;发现数据库有些设计不合理。如何来更新数据库呢&#xff1f; 使用sqflite来处理数据库&#xff0c;但是第一版软件发布后…...

集群搭建(redis7)

一、主从复制(replica)&#xff08;不推荐&#xff09; 介绍 主从复制 mmaster以写为主&#xff0c;slave以读为主当master数据变化时&#xff0c;自动将新的数据异步同步到其他slave数据库 读写分离down机恢复数据备份水平扩容支撑高并发 基本操作 配从不配主 权限细节 maste…...

高能分享:软件测试十大必问面试题(附带答案)

1 介绍之前负责的项目 参考答案&#xff1a;先大概描述一下这个项目是做什么的&#xff08;主要功能&#xff09;&#xff0c;包括哪些模块&#xff0c;是什么架构的&#xff08;B/S、C/S、移动端&#xff1f;&#xff09;&#xff0c;你在其中负责哪些模块的测试。期间经历了几…...

Java 反射设置List属性

使用 Java 反射可以动态地设置对象的属性值&#xff0c;包括 List 类型的属性。以下是一个示例代码&#xff0c;演示如何通过反射设置 List 类型的属性&#xff1a; 假设有一个类 Person&#xff0c;包含一个 List 类型的属性 names&#xff1a; java public class Person { …...

wpf devexpress Property Grid创建属性定义

WPF Property Grid控件使用属性定义定义如何做和显示 本教程示范如何绑定WP Property Grid控件到数据和创建属性定义。 执行如下步骤 第一步-创建属性定义 添加PropertyGridControl组件到项目。 打开工具箱在vs&#xff0c;定位到DX.23.1: Data 面板&#xff0c;选择Prope…...

78.子集--77.组合

78&#xff0c;子集 递归 class Solution(object):def subsets(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""# 结果ans[]# 临时结果dp_[]def dfs(nums,index):if indexlen(nums):# 保存结果co_dpdp_[:]ans.append(co_dp)r…...

【C++】模版-初阶

目录 泛型编程--模版 函数模版 类模版 泛型编程--模版 函数模版 如何实现一个通用的交换函数呢?void Swap(int& left, int& right){int temp left;left right;right temp;}void Swap(double& left, double& right){double temp left;left right;righ…...

【JavaEE初阶】 TCP服务器与客户端的搭建

文章目录 &#x1f332;前言&#x1f334;ServerSocket API&#x1f384;Socket API&#x1f340;TCP中的长短连接&#x1f38d;建立TCP回显客户端与服务器&#x1f6a9;TCP搭建服务器&#x1f6a9;TCP搭建客户端&#x1f6a9;通信过程展示&#xff1a; &#x1f333;多个客户端…...

23111710[含文档+PPT+源码等]计算机毕业设计基于SpringBoot的体育馆场地预约赛事管理系统的设计

文章目录 **软件开发环境及开发工具&#xff1a;****功能介绍&#xff1a;****论文截图&#xff1a;****数据库&#xff1a;****实现&#xff1a;****代码片段&#xff1a;** 编程技术交流、源码分享、模板分享、网课教程 &#x1f427;裙&#xff1a;776871563 软件开发环境及…...

【论文解读】GPT Understands, Too

一.论文 1.1 P-tuning 区别于之前的工作&#xff0c;这篇工作认为promote可以在句子中的任意位置起到作用&#xff0c;可以将它们插入上下文或目标中 上图中&#xff0c;左图是不使用任何操作&#xff0c;右图是选择在居首和目标前插入promote的embedding&#xff0c;插入pro…...

组合式API_生命周期

选项式API_生命周期 <template><h3>选项式API</h3><p>{{ message }}</p> </template> <script> export default {data(){return{message:""}},mounted(){this.message "选项式API生命周期函数"} } </scr…...

WPF如何实现应用程序托盘

在WPF中实现应用程序托盘图标和菜单功能通常需要使用System.Windows.Forms.NotifyIcon类&#xff0c;因为WPF本身并没有直接提供这样的控件。为了使用NotifyIcon&#xff0c;你需要添加对System.Windows.Forms的引用。以下是如何实现的步骤&#xff1a; 1. 添加对 System.Wind…...

ERROR: column “xxxx.id“ must appear in the GROUP BY

org.postgresql.util.PSQLException: ERROR: column “xxx.id” must appear in the GROUP BY clause or be used in an aggregate function 错误**&#xff1a;列“XXXX.id”必须出现在GROUP BY子句中或在聚合函数中使用** 出现这种错误的sql如下&#xff1a; select name,…...

【C++ 学习 ㊲】- 五种特殊类的设计

目录 一、设计一个禁止拷贝的类 二、设计一个只能在堆区上创建对象的类 三、设计一个只能在栈区和静态区上创建对象的类 四、设计一个不能继承的类 五、设计一个只能创建一个对象的类&#xff08;单例模式&#xff09; 一、设计一个禁止拷贝的类 拷贝只会发生在两个场景中…...

探索arkui(2)--- 布局(列表)--- 2(支持分组/实现响应滚动位置)

前端开发布局是指前端开发人员宣布他们开发的新网站或应用程序正式上线的活动。在前端开发布局中&#xff0c;开发人员通常会展示新网站或应用程序的设计、功能和用户体验&#xff0c;并向公众宣传新产品的特点和优势。前端开发布局通常是前端开发领域的重要事件&#xff0c;吸…...

systemverilog:interface中端口方向理解

&#xff08;1&#xff09;从testbench的角度看&#xff0c;tb中信号的输入输出方向与interface中信号输入输出方向一致&#xff1a; &#xff08;2&#xff09;从DUT角度看&#xff0c;DUT中信号输入输出方向与interface中信号输入输出方向相反。简单图示如下&#xff1a; 代…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...