当前位置: 首页 > news >正文

TensorFlow案例学习:图片风格迁移

准备

官方教程: 任意风格的快速风格转换

模型下载地址: https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2

学习

加载要处理的内容图片和风格图片

# 用于将图像裁剪为方形def crop_center(image):# 图片原始形状shape = image.shape# 新形状new_shape = min(shape[1], shape[2])offset_y = max(shape[1]-shape[2], 0) // 2offset_x = max(shape[2]-shape[1], 0) // 2# 返回新图片image = tf.image.crop_to_bounding_box(image, offset_y, offset_x, new_shape, new_shape)return image# 加载并预处理图片def load_image(image_url, image_size=(256, 256), preserve_aspect_ratio=True):# 缓存图像文件image_path = tf.keras.utils.get_file(os.path.basename(image_url)[-128:], image_url)# 加载并转换为float32 numpy数组,添加批次维度,并规范化为范围[0,1]。img = tf.io.decode_image(tf.io.read_file(image_path),channels=3, dtype=tf.float32)[tf.newaxis, ...]img = crop_center(img)img = tf.image.resize(img, image_size, preserve_aspect_ratio=True)return img# 展示图片def show_n(images, titles=('',)):n = len(images)image_sizes = [image.shape[1] for image in images]w = (image_sizes[0] * 6) // 320plt.figure(figsize=(w * n, w))gs = gridspec.GridSpec(1, n, width_ratios=image_sizes)for i in range(n):plt.subplot(gs[i])plt.imshow(images[i][0], aspect='equal')plt.axis('off')plt.title(titles[i] if len(titles) > i else '')plt.show()content_image_url = 'https://scpic3.chinaz.net/files/default/imgs/2023-11-16/6e397d19e172be9f_s.jpg'
style_image_url = 'https://scpic3.chinaz.net/files/default/imgs/2023-11-05/d217bbaf821e3a73_s.jpg'
output_image_size = 384# 调整内容图像的大小
content_img_size = (output_image_size, output_image_size)
#  样式图片大小
style_img_size = (256, 256)
# 加载并展示图片
content_image = load_image(content_image_url, content_img_size)
style_image = load_image(style_image_url, style_img_size)
style_image = tf.nn.avg_pool(style_image, ksize=[3, 3], strides=[1, 1], padding='SAME')
show_n([content_image, style_image], ['Content image', 'Style image'])

在这里插入图片描述

加载模型进行风格迁移

# 加载模型
hub_module = hub.load('./magenta_arbitrary-image-stylization-v1-256_2')
# 风格迁移
outputs = hub_module(tf.constant(content_image), tf.constant(style_image))
stylized_image = outputs[0]
# 展示迁移后的图片
show_n([content_image, style_image, stylized_image], titles=['Original content image', 'Style image', 'Stylized image'])

在这里插入图片描述

加载本地图片
加载本地图片的话,只需要将加载网络图片的代码改成下面的

def load_image(image_url, image_size=(256, 256), preserve_aspect_ratio=True):# 缓存图像文件# image_path = tf.keras.utils.get_file(#     os.path.basename(image_url)[-128:], image_url)# 加载并转换为float32 numpy数组,添加批次维度,并规范化为范围[0,1]。img = tf.io.decode_image(tf.io.read_file(image_url),channels=3, dtype=tf.float32)[tf.newaxis, ...]img = crop_center(img)img = tf.image.resize(img, image_size, preserve_aspect_ratio=True)return img

下面的效果图是基于一只狗和梵高的星空生成的

在这里插入图片描述

完整代码


# import os
from matplotlib import gridspec
import matplotlib.pylab as plt
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub# 用于将图像裁剪为方形def crop_center(image):# 图片原始形状shape = image.shape# 新形状new_shape = min(shape[1], shape[2])offset_y = max(shape[1]-shape[2], 0) // 2offset_x = max(shape[2]-shape[1], 0) // 2# 返回新图片image = tf.image.crop_to_bounding_box(image, offset_y, offset_x, new_shape, new_shape)return image# 加载并预处理图片def load_image(image_url, image_size=(256, 256), preserve_aspect_ratio=True):# 缓存图像文件# image_path = tf.keras.utils.get_file(#     os.path.basename(image_url)[-128:], image_url)# 加载并转换为float32 numpy数组,添加批次维度,并规范化为范围[0,1]。img = tf.io.decode_image(tf.io.read_file(image_url),channels=3, dtype=tf.float32)[tf.newaxis, ...]img = crop_center(img)img = tf.image.resize(img, image_size, preserve_aspect_ratio=True)return img# 展示图片def show_n(images, titles=('',)):n = len(images)image_sizes = [image.shape[1] for image in images]w = (image_sizes[0] * 6) // 320plt.figure(figsize=(w * n, w))gs = gridspec.GridSpec(1, n, width_ratios=image_sizes)for i in range(n):plt.subplot(gs[i])plt.imshow(images[i][0], aspect='equal')plt.axis('off')plt.title(titles[i] if len(titles) > i else '')plt.show()content_image_url = 'image/dog.png'
style_image_url = 'image/fangao.png'
output_image_size = 384# 调整内容图像的大小
content_img_size = (output_image_size, output_image_size)
#  样式图片大小
style_img_size = (256, 256)
# 加载图片
content_image = load_image(content_image_url, content_img_size)
style_image = load_image(style_image_url, style_img_size)
style_image = tf.nn.avg_pool(style_image, ksize=[3, 3], strides=[1, 1], padding='SAME')
# 展示图片
# show_n([content_image, style_image], ['Content image', 'Style image'])# 加载模型
hub_module = hub.load('./magenta_arbitrary-image-stylization-v1-256_2')
# 风格迁移
outputs = hub_module(tf.constant(content_image), tf.constant(style_image))
stylized_image = outputs[0]
# 展示迁移后的图片
show_n([content_image, style_image, stylized_image], titles=['Original content image', 'Style image', 'Stylized image'])

相关文章:

TensorFlow案例学习:图片风格迁移

准备 官方教程: 任意风格的快速风格转换 模型下载地址: https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2 学习 加载要处理的内容图片和风格图片 # 用于将图像裁剪为方形def crop_center(image):# 图片原始形状shape image…...

解密网络世界的秘密——Wireshark Mac/Win中文版网络抓包工具

在当今数字化时代,网络已经成为了人们生活和工作中不可或缺的一部分。然而,对于网络安全和性能的监控和分析却是一项重要而又复杂的任务。为了帮助用户更好地理解和解决网络中的问题,Wireshark作为一款强大的网络抓包工具,应运而生…...

自学ansible笔记

一、认识ansible Ansible是一款开源自动化运维工具。它有如下特点: 1、不需要安装客户端,通过sshd去通信,比较轻量化; 2、基于模块工作,模块可以由任何语言开发,比较自由和开放; 3、不仅支持命…...

笔记53:torch.nn.rnn() 函数详解

参数解释: (1)input_size():即输入信息 Xt 的每个序列的独热编码向量的长度,即 len(vocab) (2)hidden_size():即隐变量 h 的维度(维度是多少,就代表用几个数…...

【Spring】使用三方包进行数据源对象(数据库)管理

在这里使用alibaba的druid来连接数据库&#xff0c;然后再Spring Config下配置数据库 目录 第一步&#xff1a;在pom.xml中导入坐标第二步&#xff1a;在bean中配置连接注 第一步&#xff1a;在pom.xml中导入坐标 在dependencies下写&#xff1a; <dependency><grou…...

EfficientNet:通过模型效率彻底改变深度学习

一、介绍 EfficientNet 是深度学习领域的里程碑&#xff0c;代表了神经网络架构方法的范式转变。EfficientNet 由 Google Research 的 Mingxing Tan 和 Quoc V. Le 开发&#xff0c;在不影响性能的情况下满足了对计算高效模型不断增长的需求。本文深入探讨了 EfficientNet 背后…...

asp.net core mvc之 布局

一、布局是什么&#xff1f; 布局是把每个页面的公共部分&#xff0c;提取成一个布局页面&#xff08;头、导航、页脚&#xff09;。 二、默认布局 _Layout.cshtml 默认的布局是在 /Views/Shared 目录的 _Layout.cshtml文件。通常Shared目录中的视图都是公共视图。该目录下的…...

【QT HTTP】使用QtNetwork模块制作基于HTTP请求的C/S架构

目录 0 引言1 HTTP基本知识1.1 请求类型1.2 HTTP请求报文格式1.3 HTTP响应报文格式1.4 拓展&#xff1a;GET vs POST 请求方法GET请求请求报文&#xff1a;响应报文 POST请求请求报文响应报文 其他注意事项示例&#xff1a;GET请求示例POST请求示例 2 实战2.1 QtNetwork模块介绍…...

R语言绘制精美图形 | 火山图 | 学习笔记

一边学习&#xff0c;一边总结&#xff0c;一边分享&#xff01; 教程图形 前言 最近的事情较多&#xff0c;教程更新实在是跟不上&#xff0c;主要原因是自己没有太多时间来学习和整理相关的内容。一般在下半年基本都是非常忙&#xff0c;所有一个人的精力和时间有限&#x…...

远程创建分支本地VScode看不到分支

在代码存放处右击&#xff0c;点击Git Bash Here 输入git fetch–从远程仓库中获取最新的分支代码和提交历史 就OK啦&#xff0c;现在分支可以正常查看了...

python后台框架简介

python后台框架 Python是一种流行的编程语言&#xff0c;它有许多优点&#xff0c;如简洁、易读、灵活和功能强大。Python也是一种常用的后端开发语言&#xff0c;它可以用来构建各种类型的网站和应用程序。Python有许多后端框架&#xff0c;可以帮助开发者快速地开发和部署后…...

spring boot validation使用

spring-boot-starter-validation 是 Spring Boot 中用于支持数据验证的模块。它建立在 Java Validation API&#xff08;JSR-380&#xff09;之上&#xff0c;提供了一种方便的方式来验证应用程序中的数据。以下是使用 spring-boot-starter-validation 的基本方法&#xff1a; …...

Hadoop3.3.4分布式安装

安装前提&#xff1a;已经配置好java环境&#xff0c;所有机器之间ssh的免密登录。 注意&#xff1a;下文中的flinkv1、flinkv2、flinkv3是三台服务器的别名 1.集群部署规划 注意&#xff1a;NameNode和SecondaryNameNode不要安装在同一台服务器 注意&#xff1a;ResourceMan…...

SQL ALTER TABLE 语句||SQL AUTO INCREMENT 字段

SQL ALTER TABLE 语句 ALTER TABLE 语句 ALTER TABLE 语句用于在现有表中添加、删除或修改列。 SQL ALTER TABLE 语法 若要向表中添加列&#xff0c;请使用以下语法&#xff1a; ALTER TABLE table_name ADD column_name datatype 若要删除表中的列&am…...

【源码系列】短剧系统开发国际版短剧系统软件平台介绍

系统介绍 短剧是一种快节奏、紧凑、有趣的戏剧形式&#xff0c;通过短时间的精彩表演&#xff0c;向观众传递故事的情感和思考。它以其独特的形式和魅力&#xff0c;吸引着观众的关注&#xff0c;成为了当代戏剧娱乐中不可或缺的一部分。短剧每一集都是一个小故事&#xff0c;…...

JavaWeb[总结]

文章目录 一、Tomcat1. BS 与 CS 开发介绍1.1 BS 开发1.2 CS 开发 2. 浏览器访问 web 服务过程详解(面试题)2.1 回到前面的 JavaWeb 开发技术栈图2.2 浏览器访问 web 服务器文件的 UML时序图(过程) &#xff01; 二、动态 WEB 开发核心-Servlet1. 为什么会出现 Servlet2. 什么是…...

如何解决小程序异步请求问题

小程序异步请求问题指的是在小程序中进行异步请求时可能会出现的问题&#xff0c;比如请求失败、请求超时等。以下是一些解决方案&#xff1a; 检查网络连接&#xff1a;首先需要确保网络连接正常&#xff0c;只有网络连接正常时才能正常进行异步请求。 检查请求参数&#xff…...

NSSCTF第12页(3)

[NSSCTF 2nd]php签到 首先&#xff0c;代码定义了一个名为 waf 的函数&#xff0c;用于执行一个简单的文件扩展名检查来防止上传恶意文件。 $black_list 是一个存储不允许的文件扩展名的数组&#xff0c;如 “ph”、“htaccess” 和 “ini”。 pathinfo($filename, PATHINF…...

基于ssm+vue交通事故档案系统

摘要 摘要是对文章、论文或其他文本的主要观点、结论和关键信息的简洁概括。由于你没有提供具体的文章或主题&#xff0c;我将为你创建一个通用的摘要。 本文介绍了一种基于SSM&#xff08;Spring Spring MVC MyBatis&#xff09;和Vue.js的交通事故档案管理系统的设计与实现…...

DNS1(Bind软件)

名词解释 1、DNS&#xff08;Domain Name System&#xff09; DNS即域名系统&#xff0c;它是一个分层的分布式数据库&#xff0c;存储着IP地址与主机名的映射 2、域和域名 域为一个标签&#xff0c;而有多个标签域构成的称为域名。例如hostname.example.com&#xff0c;其…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...