当前位置: 首页 > news >正文

如何基于OpenCV和Sklearn算法库开展机器学习算法研究

       大家在做机器学习或深度学习研究过程中,不可避免都会涉及到对各种算法的研究使用,目前比较有名的机器学习算法库主要有OpenCV和Scikit-learn(简称Sklearn),二者都支持各种机器学习算法,主要有监督学习、无监督学习、数据降维等,OpenCV的所有机器学习相关函数都在OpenCV ML里面描述,OpenCV对图像处理方面有比较大的优势,后续在单独说明,Sklearn是目前机器学习领域最完整、同时也是最具影响力的算法库,基于Numpy, Scipy和matplotlib,包含了大量的机器学习算法实现,相关机器学习算法可通过sklearn.__all__进行查看,同时,Sklearn包含了非常多的已建设规范好的数据集,如波士顿数据集、mnist数据集等。
一般所说的机器学习或深度学习解决的问题主要有分类、回归、聚类和降维等。

一、十大经典机器学习算法
  1. 线性回归 (Linear Regression)
  2. 逻辑回归 (Logistic Regression)
  3. 决策树 (Decision Tree)
  4. 支持向量机(SVM)
  5. 朴素贝叶斯 (Naive Bayes)
  6. K邻近算法(KNN)
  7. K-均值算法(K-means)
  8. 随机森林 (Random Forest),集成算法
  9. 降低维度算法(Dimensionality Reduction Algorithms),主成分分析(即PCA)降维算法
  10. Gradient Boost和Adaboost集成算法
二、常见机器学习算法示例

以下是利用OpenCV或Sklearn实现的各种数据加载和分类回归问题示例,OpenCV对回归问题支持的不是太好,回归问题主要采用Sklearn实现了。完整代码如下。

import cv2  
import numpy as np  
import sklearn  
print(dir(cv2.ml))      # 查看opencv支持的所有算法函数,如cv2.ml.KNearest_create()  
print(sklearn.__all__)  # 查看sklearn支持的所有算法分类等,如sklearn.linear_model.LogisticRegression()
# 1.加载本地数据集  
print('###1.加载本地数据,访问mnist数据集','#'*50)  
from scipy.io import loadmat  
mnist = loadmat("./data/mnist-original.mat") #获取本地数据集  
print(mnist["data"].shape) #70000张图像,每张图像为28*28=784个像素  
print(mnist["label"].shape)   #70000个标签,为每张图像设置一个标签  
print(np.unique(mnist["label"])) #标签分类总共有10,及0~9  
X=mnist["data"].T # 对数据进行转置,行为照片数,列为28*28=784特征数  
y=mnist["label"].T  
print('###拆分训练集和测试集','#'*50)  
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:] #拆分数据集为训练集和测试集
# mnist分类模型训练和预测  
from sklearn.neighbors import KNeighborsClassifier  
from sklearn.linear_model import SGDClassifier  
from sklearn import metrics  
# model = SGDClassifier(random_state=42)  
model = KNeighborsClassifier()  
model.fit(X_train, y_train.ravel())  
y_pred=model.predict(X_test)  
accuracyError=metrics.mean_squared_error(y_test.ravel(), y_pred) #计算均方误差  
print('均方误差 =',accuracyError)# 2.加载digits数据,访问sklearn数据  
print('###2.加载sklearn的digits数据集','#'*50)  
from sklearn import datasets  
import matplotlib.pyplot as plt  
digits = datasets.load_digits()  
print(digits.data.shape) #1797张图像,每张图像为8*8=64个像素  
print(digits.images.shape)  
img = digits.images[0, :, :] #获取第一张图像的像素数据  
plt.imshow(img, cmap='gray') #显示出来  
plt.savefig('./notebooks/figures/02.04-digit0.png')  
plt.show()    
# 获取前10张图像并显示  
plt.figure(figsize=(14, 4)) #设置绘图区域大小,14行,4列  
for image_index in range(10):  # images are 0-indexed, subplots are 1-indexed  subplot_index = image_index + 1  plt.subplot(2, 5, subplot_index)  plt.imshow(digits.images[image_index, :, :], cmap='gray')  
plt.show()  # 3.加载boston数据,测试回归预测  
print('###3.加载sklearn的boston数据集','#'*50)  
from sklearn import datasets  
from sklearn import metrics  
from sklearn import model_selection  
from sklearn import linear_model  
import matplotlib.pyplot as plt  
boston = datasets.load_boston()  
print(dir(boston))  
linreg = linear_model.LinearRegression()   #线性回归  
# linreg= linear_model.Ridge()         #ridge回归  
# linreg= linear_model.Lasso()         #Lasso回归  
X_train, X_test, y_train, y_test = model_selection.train_test_split(  
boston.data, boston.target, test_size=0.1, random_state=42)  
linreg.fit(X_train, y_train)  
metrics.mean_squared_error(y_train, linreg.predict(X_train)) #计算均方误差  
linreg.score(X_train, y_train) #计算确定系数(R方值)  
#计算测试集的预测情况  
y_pred = linreg.predict(X_test)  
metrics.mean_squared_error(y_test, y_pred) #计算均方误差  
#绘图显示预测结果  
plt.style.use('ggplot')  
plt.rcParams.update({'font.size': 16})  
plt.figure(figsize=(10, 6))  
plt.plot(y_test, linewidth=3, label='ground truth')  
plt.plot(y_pred, linewidth=3, label='predicted')  
plt.legend(loc='best')  
plt.xlabel('test data points')  
plt.ylabel('target value')  
plt.show()  # 4.加载Iris数据,测试分类问题  
print('###4.加载sklearn的Iris数据集','#'*50)  
import numpy as np  
import cv2  
from sklearn import datasets  
from sklearn import model_selection  
from sklearn import metrics  
import matplotlib.pyplot as plt  
iris = datasets.load_iris()  
print(dir(iris))  
print(np.unique(iris.target))  
# 过滤数据,去掉分类2,变为二分类问题  
idx = iris.target != 2  
data = iris.data[idx].astype(np.float32)  
target = iris.target[idx].astype(np.float32)  
X_train, X_test, y_train, y_test = model_selection.train_test_split(  
data, target, test_size=0.1, random_state=42)  
# # (1) 利用opencv进行分类预测  
# lr = cv2.ml.LogisticRegression_create()  
# lr.setTrainMethod(cv2.ml.LogisticRegression_MINI_BATCH)  
# lr.setMiniBatchSize(1)  
# lr.setIterations(100) #设置迭代次数  
# lr.train(X_train, cv2.ml.ROW_SAMPLE, y_train)  
# lr.get_learnt_thetas() #获的权重参数  
# (2) 利用sklearn进行分类预测  
from sklearn.linear_model import LogisticRegression  
from sklearn.neighbors import KNeighborsClassifier  
from sklearn import svm  
from sklearn.tree import DecisionTreeClassifier  
# lr = KNeighborsClassifier(n_neighbors=1)  
# lr = svm.SVC()  
# lr = LogisticRegression()  
lr=DecisionTreeClassifier()  
lr.fit(X_train, y_train)  
#训练集预测  
# ret, y_pred = lr.predict(X_train) # opencv写法  
y_pred = lr.predict(X_train)        # sklearn写法  
metrics.accuracy_score(y_train, y_pred)  
#测试集预测  
# ret, y_pred = lr.predict(X_test)  # opencv写法  
y_pred = lr.predict(X_test)         # sklearn写法  
metrics.accuracy_score(y_test, y_pred)  
# 显示过滤后的数据  
plt.figure(figsize=(10, 6))  
plt.scatter(data[:, 0], data[:, 1], c=target, cmap=plt.cm.Paired, s=100)  
plt.xlabel(iris.feature_names[0])  
plt.ylabel(iris.feature_names[1])  
plt.show()

相关文章:

如何基于OpenCV和Sklearn算法库开展机器学习算法研究

大家在做机器学习或深度学习研究过程中,不可避免都会涉及到对各种算法的研究使用,目前比较有名的机器学习算法库主要有OpenCV和Scikit-learn(简称Sklearn),二者都支持各种机器学习算法,主要有监督学习、无监…...

在 Node.js 中发出 HTTP 请求的 5 种方法

在 Node.js 中发出 HTTP 请求的 5 种方法 学习如何在 Node.js 中发出 HTTP 请求可能会让人感到不知所措,因为有数十个可用的库,每个解决方案都声称比上一个更高效。一些库提供跨平台支持,而另一些库则关注捆绑包大小或开发人员体验。 在这篇…...

pipeline agent分布式构建

开启 agent rootjenkins:~/learning-jenkins-cicd/07-jenkins-agents# docker-compose -f docker-compose-inbound-agent.yml up -d Jenkins配置添加 pipeline { agent { label docker-jnlp-agent }parameters {booleanParam(name:pushImage, defaultValue: true, descript…...

MySQL(17):触发器

概述 MySQL从 5.0.2 版本开始支持触发器。MySQL的触发器和存储过程一样,都是嵌入到MySQL服务器的一段程序。 触发器是由 事件来触发 某个操作,这些事件包括 INSERT 、 UPDATE 、 DELETE 事件。 所谓事件就是指用户的动作或者触发某项行为。 如果定义了触…...

挖掘PostgreSQL事务的“中间态”----更加严谨的数据一致性?

1.问题 今天在上班途中,中心的妹纸突然找我,非常温柔的找我帮忙看个数据库的报错。当然以我的性格,妹子找我的事情对我来说优先级肯定是最高的,所以立马放下手中的“小事”,转身向妹子走去。具体是一个什么样的问题呢…...

多种方法实现conda环境迁移

Conda 为包管理器和虚拟环境管理器。在配置完项目环境,进行了编写和测试代码,需要大量数据测试运行时,需要将其移至另一台主机上。Conda 提供了多种保存和移动环境的方法。 方法1: scp拷贝法,直接将envs的环境文件夹…...

C++ string类(一)

1.C语言中的字符串 C语言中,字符串是以\0结尾的一些字符的集合,为了操作方便,C标准库中提供了一些str系列的库函数,但是这些库函数与字符串是分离开的,不太符 OOP(Object Oriented Programming)的思想,而且…...

系统时间和JVM的Date时间不一致问题解决

通过Java得到的时间与操作系统时间不一致,如何修改Java虚拟机时间? 造成这种问题的原因可能是:你的操作系统时区跟你JVM的时区不一致。 你的操作系统应该是中国的时区吧,而JVM的时区不一定是中国时区,你在应用服务器…...

23111701[含文档+PPT+源码等]计算机毕业设计javaweb点餐系统全套餐饮就餐订餐餐厅

文章目录 **项目功能简介:****点餐系统分为前台和后台****前台功能介绍:****后台功能介绍:** **论文截图:****实现:****代码片段:** 编程技术交流、源码分享、模板分享、网课教程 🐧裙:77687156…...

RabbitMQ 部署及配置详解(集群部署)

单机部署请移步: RabbitMQ 部署及配置详解 (单机) RabbitMQ 集群是一个或 多个节点,每个节点共享用户、虚拟主机、 队列、交换、绑定、运行时参数和其他分布式状态。 一、RabbitMQ 集群可以通过多种方式形成: 通过在配置文件中列出群集节点以…...

基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码

基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于蝠鲼觅食优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…...

「分享学习」SpringCloudAlibaba高并发仿斗鱼直播平台实战完结

[分享学习]SpringCloudAlibaba高并发仿斗鱼直播平台实战完结 第一段:简介 Spring Cloud Alibaba是基于Spring Cloud和阿里巴巴开源技术的微效劳框架,普遍应用于大范围高并发的互联网应用系统。本文将引见如何运用Spring Cloud Alibaba构建一个高并发的仿…...

Vue|props配置

props是Vue中用于传递数据的属性。通过在子组件的选项中定义props属性,可以指定子组件可以接收的数据以及其他配置选项。父组件可以通过在子组件上使用特定的属性来传递数据。 目录 目录 App.vue 什么是App.vue 组件引用 props配置 组件复用 案例1&#xff1a…...

使用Microsoft Dynamics AX 2012 - 2. 入门:导航和常规选项

Microsoft Dynamics AX的核心原则之一是为习惯于Microsoft软件的用户提供熟悉的外观和感觉。然而,业务软件必须适应业务流程,这可能相当复杂。 用户界面和常见任务 在我们开始进行业务流程和案例研究之前,我们想了解一下本章中的常见功能。…...

【代码随想录】算法训练计划21、22

day 21 1、530. 二叉搜索树的最小绝对差 题目: 给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。 差值是一个正数,其数值等于两值之差的绝对值。 思路: 利用了二叉搜索树的中序遍历特性用了双指…...

java实现钉钉机器人消息推送

项目开发中需要用到钉钉机器人发送任务状态,本来想单独做一个功能就好,但是想着公司用到钉钉机器人发送项目挺多的。所以把这个钉钉机器人抽离成一个组件发布到企业maven仓库,这样可以给其他同事用提高工作效率。 1.目录结构 2.用抽象类&…...

C语言之break continue详解

C语言之break continue 文章目录 C语言之break continue1. break 和 continue2. while语句中的break和continue2.1break和continue举例 3. for语句中的break和continue3.1break和continue举例 1. break 和 continue 循环中break和continue 在循环语句中,如果我达到…...

mysql group by 执行原理及千万级别count 查询优化

大家好,我是蓝胖子,前段时间mysql经常碰到慢查询报警,我们线上的慢sql阈值是1s,出现报警的表数据有 7000多万,经常出现报警的是一个group by的count查询,于是便开始着手优化这块,遂有此篇,记录下…...

Linux的几个常用基本指令

目录 1. ls 指令2.pwd命令3.cd 指令4. touch指令5.mkdir指令6.rmdir指令 && rm 指令7.man指令8.cp指令9.mv指令10.cat指令 1. ls 指令 语法: ls [选项][目录或文件] 功能:对于目录,该命令列出该目录下的所有子目录与文件。对于文件&…...

mac中安装Homebrew

1、Homebrew是什么? 软件安装管理工具 2、先检查电脑中是否已经安装了Homebrew 打开终端输入:brew 提示命令没有找到,说明电脑没有安装Homebrew 如果提示上述图片说明Homebrew已经安装成功 3、安装Homebrew 进入https://brew.sh/ 复制的命…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...

Axure 下拉框联动

实现选省、选完省之后选对应省份下的市区...