当前位置: 首页 > news >正文

如何基于OpenCV和Sklearn算法库开展机器学习算法研究

       大家在做机器学习或深度学习研究过程中,不可避免都会涉及到对各种算法的研究使用,目前比较有名的机器学习算法库主要有OpenCV和Scikit-learn(简称Sklearn),二者都支持各种机器学习算法,主要有监督学习、无监督学习、数据降维等,OpenCV的所有机器学习相关函数都在OpenCV ML里面描述,OpenCV对图像处理方面有比较大的优势,后续在单独说明,Sklearn是目前机器学习领域最完整、同时也是最具影响力的算法库,基于Numpy, Scipy和matplotlib,包含了大量的机器学习算法实现,相关机器学习算法可通过sklearn.__all__进行查看,同时,Sklearn包含了非常多的已建设规范好的数据集,如波士顿数据集、mnist数据集等。
一般所说的机器学习或深度学习解决的问题主要有分类、回归、聚类和降维等。

一、十大经典机器学习算法
  1. 线性回归 (Linear Regression)
  2. 逻辑回归 (Logistic Regression)
  3. 决策树 (Decision Tree)
  4. 支持向量机(SVM)
  5. 朴素贝叶斯 (Naive Bayes)
  6. K邻近算法(KNN)
  7. K-均值算法(K-means)
  8. 随机森林 (Random Forest),集成算法
  9. 降低维度算法(Dimensionality Reduction Algorithms),主成分分析(即PCA)降维算法
  10. Gradient Boost和Adaboost集成算法
二、常见机器学习算法示例

以下是利用OpenCV或Sklearn实现的各种数据加载和分类回归问题示例,OpenCV对回归问题支持的不是太好,回归问题主要采用Sklearn实现了。完整代码如下。

import cv2  
import numpy as np  
import sklearn  
print(dir(cv2.ml))      # 查看opencv支持的所有算法函数,如cv2.ml.KNearest_create()  
print(sklearn.__all__)  # 查看sklearn支持的所有算法分类等,如sklearn.linear_model.LogisticRegression()
# 1.加载本地数据集  
print('###1.加载本地数据,访问mnist数据集','#'*50)  
from scipy.io import loadmat  
mnist = loadmat("./data/mnist-original.mat") #获取本地数据集  
print(mnist["data"].shape) #70000张图像,每张图像为28*28=784个像素  
print(mnist["label"].shape)   #70000个标签,为每张图像设置一个标签  
print(np.unique(mnist["label"])) #标签分类总共有10,及0~9  
X=mnist["data"].T # 对数据进行转置,行为照片数,列为28*28=784特征数  
y=mnist["label"].T  
print('###拆分训练集和测试集','#'*50)  
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:] #拆分数据集为训练集和测试集
# mnist分类模型训练和预测  
from sklearn.neighbors import KNeighborsClassifier  
from sklearn.linear_model import SGDClassifier  
from sklearn import metrics  
# model = SGDClassifier(random_state=42)  
model = KNeighborsClassifier()  
model.fit(X_train, y_train.ravel())  
y_pred=model.predict(X_test)  
accuracyError=metrics.mean_squared_error(y_test.ravel(), y_pred) #计算均方误差  
print('均方误差 =',accuracyError)# 2.加载digits数据,访问sklearn数据  
print('###2.加载sklearn的digits数据集','#'*50)  
from sklearn import datasets  
import matplotlib.pyplot as plt  
digits = datasets.load_digits()  
print(digits.data.shape) #1797张图像,每张图像为8*8=64个像素  
print(digits.images.shape)  
img = digits.images[0, :, :] #获取第一张图像的像素数据  
plt.imshow(img, cmap='gray') #显示出来  
plt.savefig('./notebooks/figures/02.04-digit0.png')  
plt.show()    
# 获取前10张图像并显示  
plt.figure(figsize=(14, 4)) #设置绘图区域大小,14行,4列  
for image_index in range(10):  # images are 0-indexed, subplots are 1-indexed  subplot_index = image_index + 1  plt.subplot(2, 5, subplot_index)  plt.imshow(digits.images[image_index, :, :], cmap='gray')  
plt.show()  # 3.加载boston数据,测试回归预测  
print('###3.加载sklearn的boston数据集','#'*50)  
from sklearn import datasets  
from sklearn import metrics  
from sklearn import model_selection  
from sklearn import linear_model  
import matplotlib.pyplot as plt  
boston = datasets.load_boston()  
print(dir(boston))  
linreg = linear_model.LinearRegression()   #线性回归  
# linreg= linear_model.Ridge()         #ridge回归  
# linreg= linear_model.Lasso()         #Lasso回归  
X_train, X_test, y_train, y_test = model_selection.train_test_split(  
boston.data, boston.target, test_size=0.1, random_state=42)  
linreg.fit(X_train, y_train)  
metrics.mean_squared_error(y_train, linreg.predict(X_train)) #计算均方误差  
linreg.score(X_train, y_train) #计算确定系数(R方值)  
#计算测试集的预测情况  
y_pred = linreg.predict(X_test)  
metrics.mean_squared_error(y_test, y_pred) #计算均方误差  
#绘图显示预测结果  
plt.style.use('ggplot')  
plt.rcParams.update({'font.size': 16})  
plt.figure(figsize=(10, 6))  
plt.plot(y_test, linewidth=3, label='ground truth')  
plt.plot(y_pred, linewidth=3, label='predicted')  
plt.legend(loc='best')  
plt.xlabel('test data points')  
plt.ylabel('target value')  
plt.show()  # 4.加载Iris数据,测试分类问题  
print('###4.加载sklearn的Iris数据集','#'*50)  
import numpy as np  
import cv2  
from sklearn import datasets  
from sklearn import model_selection  
from sklearn import metrics  
import matplotlib.pyplot as plt  
iris = datasets.load_iris()  
print(dir(iris))  
print(np.unique(iris.target))  
# 过滤数据,去掉分类2,变为二分类问题  
idx = iris.target != 2  
data = iris.data[idx].astype(np.float32)  
target = iris.target[idx].astype(np.float32)  
X_train, X_test, y_train, y_test = model_selection.train_test_split(  
data, target, test_size=0.1, random_state=42)  
# # (1) 利用opencv进行分类预测  
# lr = cv2.ml.LogisticRegression_create()  
# lr.setTrainMethod(cv2.ml.LogisticRegression_MINI_BATCH)  
# lr.setMiniBatchSize(1)  
# lr.setIterations(100) #设置迭代次数  
# lr.train(X_train, cv2.ml.ROW_SAMPLE, y_train)  
# lr.get_learnt_thetas() #获的权重参数  
# (2) 利用sklearn进行分类预测  
from sklearn.linear_model import LogisticRegression  
from sklearn.neighbors import KNeighborsClassifier  
from sklearn import svm  
from sklearn.tree import DecisionTreeClassifier  
# lr = KNeighborsClassifier(n_neighbors=1)  
# lr = svm.SVC()  
# lr = LogisticRegression()  
lr=DecisionTreeClassifier()  
lr.fit(X_train, y_train)  
#训练集预测  
# ret, y_pred = lr.predict(X_train) # opencv写法  
y_pred = lr.predict(X_train)        # sklearn写法  
metrics.accuracy_score(y_train, y_pred)  
#测试集预测  
# ret, y_pred = lr.predict(X_test)  # opencv写法  
y_pred = lr.predict(X_test)         # sklearn写法  
metrics.accuracy_score(y_test, y_pred)  
# 显示过滤后的数据  
plt.figure(figsize=(10, 6))  
plt.scatter(data[:, 0], data[:, 1], c=target, cmap=plt.cm.Paired, s=100)  
plt.xlabel(iris.feature_names[0])  
plt.ylabel(iris.feature_names[1])  
plt.show()

相关文章:

如何基于OpenCV和Sklearn算法库开展机器学习算法研究

大家在做机器学习或深度学习研究过程中,不可避免都会涉及到对各种算法的研究使用,目前比较有名的机器学习算法库主要有OpenCV和Scikit-learn(简称Sklearn),二者都支持各种机器学习算法,主要有监督学习、无监…...

在 Node.js 中发出 HTTP 请求的 5 种方法

在 Node.js 中发出 HTTP 请求的 5 种方法 学习如何在 Node.js 中发出 HTTP 请求可能会让人感到不知所措,因为有数十个可用的库,每个解决方案都声称比上一个更高效。一些库提供跨平台支持,而另一些库则关注捆绑包大小或开发人员体验。 在这篇…...

pipeline agent分布式构建

开启 agent rootjenkins:~/learning-jenkins-cicd/07-jenkins-agents# docker-compose -f docker-compose-inbound-agent.yml up -d Jenkins配置添加 pipeline { agent { label docker-jnlp-agent }parameters {booleanParam(name:pushImage, defaultValue: true, descript…...

MySQL(17):触发器

概述 MySQL从 5.0.2 版本开始支持触发器。MySQL的触发器和存储过程一样,都是嵌入到MySQL服务器的一段程序。 触发器是由 事件来触发 某个操作,这些事件包括 INSERT 、 UPDATE 、 DELETE 事件。 所谓事件就是指用户的动作或者触发某项行为。 如果定义了触…...

挖掘PostgreSQL事务的“中间态”----更加严谨的数据一致性?

1.问题 今天在上班途中,中心的妹纸突然找我,非常温柔的找我帮忙看个数据库的报错。当然以我的性格,妹子找我的事情对我来说优先级肯定是最高的,所以立马放下手中的“小事”,转身向妹子走去。具体是一个什么样的问题呢…...

多种方法实现conda环境迁移

Conda 为包管理器和虚拟环境管理器。在配置完项目环境,进行了编写和测试代码,需要大量数据测试运行时,需要将其移至另一台主机上。Conda 提供了多种保存和移动环境的方法。 方法1: scp拷贝法,直接将envs的环境文件夹…...

C++ string类(一)

1.C语言中的字符串 C语言中,字符串是以\0结尾的一些字符的集合,为了操作方便,C标准库中提供了一些str系列的库函数,但是这些库函数与字符串是分离开的,不太符 OOP(Object Oriented Programming)的思想,而且…...

系统时间和JVM的Date时间不一致问题解决

通过Java得到的时间与操作系统时间不一致,如何修改Java虚拟机时间? 造成这种问题的原因可能是:你的操作系统时区跟你JVM的时区不一致。 你的操作系统应该是中国的时区吧,而JVM的时区不一定是中国时区,你在应用服务器…...

23111701[含文档+PPT+源码等]计算机毕业设计javaweb点餐系统全套餐饮就餐订餐餐厅

文章目录 **项目功能简介:****点餐系统分为前台和后台****前台功能介绍:****后台功能介绍:** **论文截图:****实现:****代码片段:** 编程技术交流、源码分享、模板分享、网课教程 🐧裙:77687156…...

RabbitMQ 部署及配置详解(集群部署)

单机部署请移步: RabbitMQ 部署及配置详解 (单机) RabbitMQ 集群是一个或 多个节点,每个节点共享用户、虚拟主机、 队列、交换、绑定、运行时参数和其他分布式状态。 一、RabbitMQ 集群可以通过多种方式形成: 通过在配置文件中列出群集节点以…...

基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码

基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于蝠鲼觅食优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…...

「分享学习」SpringCloudAlibaba高并发仿斗鱼直播平台实战完结

[分享学习]SpringCloudAlibaba高并发仿斗鱼直播平台实战完结 第一段:简介 Spring Cloud Alibaba是基于Spring Cloud和阿里巴巴开源技术的微效劳框架,普遍应用于大范围高并发的互联网应用系统。本文将引见如何运用Spring Cloud Alibaba构建一个高并发的仿…...

Vue|props配置

props是Vue中用于传递数据的属性。通过在子组件的选项中定义props属性,可以指定子组件可以接收的数据以及其他配置选项。父组件可以通过在子组件上使用特定的属性来传递数据。 目录 目录 App.vue 什么是App.vue 组件引用 props配置 组件复用 案例1&#xff1a…...

使用Microsoft Dynamics AX 2012 - 2. 入门:导航和常规选项

Microsoft Dynamics AX的核心原则之一是为习惯于Microsoft软件的用户提供熟悉的外观和感觉。然而,业务软件必须适应业务流程,这可能相当复杂。 用户界面和常见任务 在我们开始进行业务流程和案例研究之前,我们想了解一下本章中的常见功能。…...

【代码随想录】算法训练计划21、22

day 21 1、530. 二叉搜索树的最小绝对差 题目: 给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。 差值是一个正数,其数值等于两值之差的绝对值。 思路: 利用了二叉搜索树的中序遍历特性用了双指…...

java实现钉钉机器人消息推送

项目开发中需要用到钉钉机器人发送任务状态,本来想单独做一个功能就好,但是想着公司用到钉钉机器人发送项目挺多的。所以把这个钉钉机器人抽离成一个组件发布到企业maven仓库,这样可以给其他同事用提高工作效率。 1.目录结构 2.用抽象类&…...

C语言之break continue详解

C语言之break continue 文章目录 C语言之break continue1. break 和 continue2. while语句中的break和continue2.1break和continue举例 3. for语句中的break和continue3.1break和continue举例 1. break 和 continue 循环中break和continue 在循环语句中,如果我达到…...

mysql group by 执行原理及千万级别count 查询优化

大家好,我是蓝胖子,前段时间mysql经常碰到慢查询报警,我们线上的慢sql阈值是1s,出现报警的表数据有 7000多万,经常出现报警的是一个group by的count查询,于是便开始着手优化这块,遂有此篇,记录下…...

Linux的几个常用基本指令

目录 1. ls 指令2.pwd命令3.cd 指令4. touch指令5.mkdir指令6.rmdir指令 && rm 指令7.man指令8.cp指令9.mv指令10.cat指令 1. ls 指令 语法: ls [选项][目录或文件] 功能:对于目录,该命令列出该目录下的所有子目录与文件。对于文件&…...

mac中安装Homebrew

1、Homebrew是什么? 软件安装管理工具 2、先检查电脑中是否已经安装了Homebrew 打开终端输入:brew 提示命令没有找到,说明电脑没有安装Homebrew 如果提示上述图片说明Homebrew已经安装成功 3、安装Homebrew 进入https://brew.sh/ 复制的命…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

redis和redission的区别

Redis 和 Redisson 是两个密切相关但又本质不同的技术&#xff0c;它们扮演着完全不同的角色&#xff1a; Redis: 内存数据库/数据结构存储 本质&#xff1a; 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能&#xff1a; 提供丰…...

自然语言处理——文本分类

文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益&#xff08;IG&#xff09; 分类器设计贝叶斯理论&#xff1a;线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别&#xff0c; 有单标签多类别文本分类和多…...

Xcode 16 集成 cocoapods 报错

基于 Xcode 16 新建工程项目&#xff0c;集成 cocoapods 执行 pod init 报错 ### Error RuntimeError - PBXGroup attempted to initialize an object with unknown ISA PBXFileSystemSynchronizedRootGroup from attributes: {"isa">"PBXFileSystemSynchro…...

数据分析六部曲?

引言 上一章我们说到了数据分析六部曲&#xff0c;何谓六部曲呢&#xff1f; 其实啊&#xff0c;数据分析没那么难&#xff0c;只要掌握了下面这六个步骤&#xff0c;也就是数据分析六部曲&#xff0c;就算你是个啥都不懂的小白&#xff0c;也能慢慢上手做数据分析啦。 第一…...

13.10 LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析

LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析 LanguageMentor 对话式训练系统架构与实现 关键词:多轮对话系统设计、场景化提示工程、情感识别优化、LangGraph 状态管理、Ollama 私有化部署 1. 对话训练系统技术架构 采用四层架构实现高扩展性的对话训练…...