计算机视觉的应用18-一键抠图人像与更换背景的项目应用,可扩展批量抠图与背景替换
大家好,我是微学AI,今天给大家介绍一下计算机视觉的应用18-一键抠图人像与更换背景的项目应用,可扩展批量抠图与背景替换。该项目能够让你轻松地处理和编辑图片。这个项目的核心功能是一键抠图和更换背景。这个项目能够自动识别图片中的主体,然后将其从背景中抠出来。这个过程不需要你进行任何复杂的操作,只需要一键点击,就可以得到一个有透明背景的PNG图片。该项目还提供了更换背景的功能。你可以选择使用简约的纯色为背景着色,或者使用其他的图片作为全新的背景。这样,你就可以根据自己的需要,为图片创造出各种不同的视觉效果。后续还会提供一些其他的图片编辑功能,比如改图、修图和美图应用。这些功能都是一键操作,非常方便易用。 该项目应用是一个强大而又便捷的图片处理工具,无论你是专业的设计师,还是普通的用户,都可以通过这个项目,轻松地处理和编辑图片,实现你的创意想法。
目录:
- 项目应用概述
- 一键人像抠图的原理
- 模型结构详解
- 数据标注过程
- 标注的形式
- 训练过程
- 一键人像抠图的代码实现
- 未来发展趋势
1. 项目应用概述
一键人像抠图与更换背景的应用广泛,例如在摄影后期制作、影视制作、广告设计等领域。只需要一键就能准确抠出人像,再将人像放置在新的背景之中,极大地提高了工作效率。
2. 一键人像抠图的原理
一键人像抠图主要通过深度学习的方法实现。首先,模型会对整个图像进行语义分割,识别出图像中的人物部分。然后,对人物部分和背景部分进行精细的边缘处理,实现准确的抠图效果。
一键人像抠图其核心是基于像素的分类问题。我们将输入图像的每个像素归类为特定类别(例如人物或背景)。这个过程可以被看作是对每个像素进行分类的概率问题。其中,常用的方法有Softmax函数,它可以将一个含任意实数的K维向量“压缩”到另一个K维实向量中,使得每一个元素的范围都在(0,1)之间,并且所有元素的和为1。
3. 模型结构详解
人像抠图的模型通常由两部分组成:特征提取网络和语义分割网络。特征提取网络首先提取出图像的基本特征,然后语义分割网络根据这些特征进行精确的分割。常见的模型有U-Net,它的优点是可以在保证分割精度的同时,大幅度减少计算量。
模型U-Net其结构为编码器-解码器结构。编码器用于抽取图像特征,解码器则用于将这些特征映射回原始图像的空间分辨率,以进行像素级别的预测。
4. 数据标注过程
抠图模型的训练需要大量标注过的图像数据。标注过程一般包括以下步骤:
首先,选择要标注的原始图像。这些图像可以来自于公开的数据集,也可以是自己收集的图像。接下来,对每一个原始图像进行标注。标注的目标是区分出图像中的人物和背景。这通常需要专业的图像处理软件和经验丰富的标注员来完成。
最后,将标注好的图像和对应的原始图像一起,作为训练数据供模型学习。
5. 标注的形式
标注的结果通常以掩膜(mask)的形式存在,也就是一张与原始图像大小相同的二值图像。在这张图像中,人物部分的像素值为1,背景部分的像素值为0。这种方式可以清晰地区分出人物和背景,方便模型进行学习。
我们需要注意:对于一些复杂的情况,例如人物的头发、玻璃等半透明物体,可能需要使用更细粒度的标注,例如alpha通道。Alpha通道可以表示像素的透明度,范围通常在0(完全透明)到1(完全不透明)之间。
6. 训练过程
模型的输入数据通常是RGB图像,输出数据则是与输入图像大小相同的分割图,其中每个像素的值表示其所属的类别。模型训练的目标是最小化预测的分割图与真实分割图之间的差异,常用的损失函数有交叉熵损失。
在训练过程中,常用的优化器有Adam,它结合了AdaGrad和RMSProp两种优化算法的优点,能够自适应地调整学习率,从而在训练初期快速收敛,训练后期则能保持较小的学习率,确保模型的稳定性。
7. 一键人像抠图的代码实现
我们用快速方法实现一键人像抠图,利用到ModelScope库,ModelScope是阿里推出的开源仓库,它提供了接口和实现,允许开发者进行模型推理、训练和评估。特别是,通过丰富的API抽象层,ModelScope库提供了统一的体验,可以探索跨越CV、NLP、语音、多模态和科学计算等领域的最新模型。
这里需要安装modelscope第三方库,可以用以下命令,只安装modelscope[cv]的cv形式,即计算机视觉部分。
pip install "modelscope[cv]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
import cv2
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.outputs import OutputKeys
import time
from PIL import Imagedef portrait_person(image_path,out_path,color):portrait_matting = pipeline(Tasks.portrait_matting, model='damo/cv_unet_image-matting')result = portrait_matting(image_path)timestamp = str(int(time.time()))cv2.imwrite(out_path, result[OutputKeys.OUTPUT_IMG])# 打开已经扣好的图片和背景图片foreground_image = Image.open(out_path)print(foreground_image.size)# background_image = Image.open('bk3.jpg')background_image = Image.new('RGB', foreground_image.size, color=color)# 调整已经扣好的图片大小和位置(可选)resized_foreground = foreground_image.resize(foreground_image.size)# 创建一个新的图像对象作为融合后的图像merged_image = background_image.copy()# 将已经扣好的图片粘贴到背景图片上merged_image.paste(resized_foreground, (0,0), mask=resized_foreground)# 保存融合后的图片merged_image.save(out_path)return out_pathif __name__ == "__main__":input_path = "input1.jpg"out_path = "results.png"color = (255, 192, 203) # 粉红色的 RGB 值portrait_person(input_path,out_path,color)
运行图片换背景:

更换背景颜色之后:

8. 未来发展趋势
随着深度学习技术的发展,一键人像抠图的准确率和效率都在不断提高。未来,我们期待看到的是,这种技术能更好地融入到我们的日常生活中,使得任何人都可以轻松地进行人像抠图和背景更换。以上就是一键人像抠图与更换背景的项目应用,以及一键人像抠图的原理和模型结构的详细介绍。希望大家多多支持与关注,谢谢!!
相关文章:
计算机视觉的应用18-一键抠图人像与更换背景的项目应用,可扩展批量抠图与背景替换
大家好,我是微学AI,今天给大家介绍一下计算机视觉的应用18-一键抠图人像与更换背景的项目应用,可扩展批量抠图与背景替换。该项目能够让你轻松地处理和编辑图片。这个项目的核心功能是一键抠图和更换背景。这个项目能够自动识别图片中的主体&…...
Redis(哈希Hash和发布订阅模式)
哈希是一个字符类型字段和值的映射表。 在Redis中,哈希是一种数据结构,用于存储键值对的集合。哈希可以理解为一个键值对的集合,其中每个键都对应一个值。哈希在Redis中的作用主要有以下几点: 1. 存储对象:哈希可以用…...
php正则表达式汇总
php正则表达式有"/pattern/“、”“、”$“、”.“、”[]“、”[]“、”[a-z]“、”[A-Z]“、”[0-9]“、”\d"、“\D”、“\w”、“\W”、“\s”、“\S”、“\b”、“*”、“”、“?”、“{n}”、“{n,}”、“{n,m}”、“\bword\b”、“(pattern)”、“x|y"和…...
Python与ArcGIS系列(八)通过python执行地理处理工具
目录 0 简述1 脚本执行地理处理工具2 在地理处理工具间建立联系0 简述 arcgis包含数百种可以通过python脚本执行的地理处理工具,这样就通过python可以处理复杂的工作和批处理。本篇将介绍如何利用arcpy实现执行地理处理工具以及在地理处理工具间建立联系。 1 脚本执行地理处理…...
cocos----刚体
刚体(Rigidbody) 刚体(Rigidbody)是运动学(Kinematic)中的一个概念,指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。在 Unity3D 中ÿ…...
【SAP-HCM】--HR人员信息导入函数
人员基本信息导入函数:HR_MAINTAIN_MASTERDATA 人员其他信息类型导入函数:HR_INFOTYPE_OPERATION 不逼逼,直接上代码,这两个函数还是相对简单易懂的 *根据操作类型查找对应的T529A 操作类型对应的值IF gt_alv IS NOT INITIAL.S…...
【开源】基于JAVA的大学兼职教师管理系统
项目编号: S 004 ,文末获取源码。 \color{red}{项目编号:S004,文末获取源码。} 项目编号:S004,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容三、界面展示3.1 登录注册3.2 学生教师管…...
Pyhon函数
import time # # for i in range(1,10): # j1 # for j in range(1,i1): # print(f"{i}x{j}{i*j} " ,end) # print() #复用,代码,精简,复用度高def j99(n1,max10): for i in range(n,max):jifor j in ran…...
使用vuex完成小黑记事本案例
使用vuex完成小黑记事本案例 App.vue <template><div id"app"><TodoHeader></TodoHeader><TodoMain ></TodoMain><TodoFooter></TodoFooter></div> </template><script> import TodoMain from …...
进阶理解:leetcode115.不同的子序列(细节深度)
这道题是困难题,本章是针对于动态规划解决,对于思路进行一个全面透彻的讲解,但是并不是对于基础讲解思路,而是渗透到递推式和dp填数的详解,如果有读者不清楚基本的解题思路,请看我的这篇文章算法训练营DAY5…...
数据结构-哈希表(C语言)
哈希表的概念 哈希表就是: “将记录的存储位置与它的关键字之间建立一个对应关系,使每个关键字和一个唯一的存储位置对 应。” 哈希表又称:“散列法”、“杂凑法”、“关键字:地址法”。 哈希表思想 基本思想是在关键字和存…...
HCIA-综合实验(三)
综合实验(三) 1 实验拓扑2 IP 规划3 实验需求一、福州思博网络规划如下:二、上海思博网络规划如下:三、福州思博与上海思博网络互联四、网络优化 4 配置思路4.1 福州思博配置在 SW1、SW2、SW3 上配置交换网络SW1、SW2、SW3 运行 S…...
Java程序员的成长路径
熟悉JAVA语言基础语法。 学习JAVA基础知识,推荐阅读书单中的经典书籍。 理解并掌握面向对象的特性,比如继承,多态,覆盖,重载等含义,并正确运用。 熟悉SDK中常见类和API的使用,比如࿱…...
几种常用的排序
int[] arr new int[]{1, 2,8, 7, 5};这是提前准备好的数组 冒泡排序 public static void bubbleSort(int[] arr) {int len arr.length;for (int i 0; i < len - 1; i) {for (int j 0; j < len - i - 1; j) {if (arr[j] > arr[j1]) {int temp arr[j];arr[j] ar…...
性能测试【第三篇】Jmeter的使用
线程数:10 ,设置10个并发 Ramp-Up时间(秒):所有线程在多少时间内启动,如果设置5,那么每秒启动2个线程 循环次数:请求的重复次数,如果勾选"永远"将一直发送请求 持续时间时间:设置场景运行的时间 启动延迟:设置场景延迟启动时间 响应断言 响应断言模式匹配规则 包括…...
业务:业务系统检查项参考
名录明细云平台摸底1.原有云平台体系:VMware、openstack、ovirt、k8s、docker、混合云系列及版本 2.原有云平台规模,物理机数量、虚拟机数量、迁移业务系统所占配额 3.待补充系统摸底 (适用于物理主机)每一台虚拟机或物理机: 1.系统全局参数…...
解决公网下,k8s calico master节点无法访问node节点创建的pod
目的:解决pod部署成功后,只能在node节点访问,而master节点无法访问 原因:集群搭建时,没有配置公网进行kubectl操作,从而导致系统默认node节点,使用内网IP加入k8s集群!如下ÿ…...
六边形架构
Alistair Cockburn是于1953年出生在美国的一位软件开发方法学家。他毕业于康奈尔大学计算机科学专业,并获得了博士学位。 Cockburn在敏捷软件开发领域做出了许多重要的贡献,他被广泛认可为敏捷方法学的奠基人之一。他提出了许多关于敏捷开发的原则和实践…...
基于单片机的智能家居安保系统(论文+源码)
1.系统设计 本次基于单片机的智能家居安保系统设计,在功能上如下: 1)以51单片机为系统控制核心; 2)温度传感器、人体红外静释电、烟雾传感器来实现检测目的; 3)以GSM模块辅以按键来实现远/近程…...
盘点3种Python网络爬虫过程中的中文乱码的处理方法
网络爬虫过程中三种中文乱码的处理方案,希望对大家的学习有所帮助 一、思路 其实解决问题的关键点就是在于一点,就是将乱码的部分进行处理,而处理的方案主要可以从两个方面进行出发。其一是针对整体网页进行提前编码,其二是针对…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》
🧠 LangChain 中 TextSplitter 的使用详解:从基础到进阶(附代码) 一、前言 在处理大规模文本数据时,特别是在构建知识库或进行大模型训练与推理时,文本切分(Text Splitting) 是一个…...
2.3 物理层设备
在这个视频中,我们要学习工作在物理层的两种网络设备,分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间,需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质,假设A节点要给…...
深度解析:etcd 在 Milvus 向量数据库中的关键作用
目录 🚀 深度解析:etcd 在 Milvus 向量数据库中的关键作用 💡 什么是 etcd? 🧠 Milvus 架构简介 📦 etcd 在 Milvus 中的核心作用 🔧 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...
RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上
一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema,不需要复杂的查询,只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 :在几秒钟…...
