当前位置: 首页 > news >正文

原型网络Prototypical Network的python代码逐行解释,新手小白也可学会!!由于工作量大,准备整8个系列完事,-----系列5

在这里插入图片描述

文章目录

  • 前言
  • 一、原始程序---计算原型,开始训练,计算损失
  • 二、每一行代码的详细解释
    • 2.1 粗略分析
    • 2.2 每一行代码详细分析


前言

承接系列4,此部分属于原型类中的计算原型,开始训练,计算损失函数。


一、原始程序—计算原型,开始训练,计算损失

def compute_center(self,data_set):	#data_set是一个numpy对象,是某一个支持集,计算支持集对应的中心的点center = 0for i in range(self.Ns):data = np.reshape(data_set[i], [1, self.input_shape[0], self.input_shape[1], self.input_shape[2]])data = Variable(torch.from_numpy(data))data = self.model(data)[0]	#将查询点嵌入另一个空间if i == 0:center = dataelse:center += datacenter /= self.Nsreturn centerdef train(self,labels_data,class_number):	#网络的训练#Select class indices for episodeclass_index = list(range(class_number))random.shuffle(class_index)choss_class_index = class_index[:self.Nc]#选20个类sample = {'xc':[],'xq':[]}for label in choss_class_index:D_set = labels_data[label]#从D_set随机取支持集和查询集support_set,query_set = self.randomSample(D_set)#计算中心点self.center[label] = self.compute_center(support_set)#将中心和查询集存储在list中sample['xc'].append(self.center[label])	#listsample['xq'].append(query_set)#优化器optimizer = torch.optim.Adam(self.model.parameters(),lr=0.001)optimizer.zero_grad()protonets_loss = self.loss(sample)protonets_loss.backward()optimizer.step()def loss(self,sample):	#自定义lossloss_1 = autograd.Variable(torch.FloatTensor([0]))for i in range(self.Nc):query_dataSet = sample['xq'][i]for n in range(self.Nq):data = np.reshape(query_dataSet[n], [1, self.input_shape[0], self.input_shape[1], self.input_shape[2]])data = Variable(torch.from_numpy(data))data = self.model(data)[0]	#将查询点嵌入另一个空间#查询点与每个中心点逐个计算欧氏距离predict = 0for j in range(self.Nc):center_j = sample['xc'][j]if j == 0:predict = eucli_tensor(data,center_j)else:predict = torch.cat((predict, eucli_tensor(data,center_j)), 0)#为loss叠加loss_1 += -1*F.log_softmax(predict,dim=0)[i]loss_1 /= self.Nq*self.Ncreturn loss_1

二、每一行代码的详细解释

2.1 粗略分析

第一个函数 compute_center(self,data_set) 用于计算支持集中心点的坐标。输入参数 data_set 是一个 numpy 对象,代表支持集。该函数中用了一个 for 循环遍历了每一个支持集中的样本,将其嵌入到另一个空间,并计算其总和来求得所有样本的中心点。最后返回计算出的中心点的坐标。

第二个函数 train(self,labels_data,class_number) 是网络的训练函数。其中 labels_data 是标签数据,class_number 是类别数。首先从 class_number 中随机选取出 Nc 个类,对于每个选出来的类,从其标签数据 D_set 中随机选取出支持集和查询集,并将支持集传入 compute_center() 函数计算中心点。接着将计算出的中心点和查询集存储在样本字典 sample 中。最后使用 Adam 优化器对模型进行优化,并计算损失(调用了 loss 函数),将反向传播得到的梯度更新到模型中。

第三个函数def loss(self,sample)是一个自定义的损失函数,它的作用是计算样本的损失值。在这个损失函数中,使用了欧氏距离和softmax函数。

2.2 每一行代码详细分析

def compute_center(self,data_set): - 这是一个方法,用于计算给定数据集(支持集)的中心点。

2-4. center = 0 - 初始化中心点的变量为0。

5-8. for i in range(self.Ns): - 遍历数据集中的每个数据点。

9-14. 这部分代码将数据集中的每个数据点重塑为适应模型输入的形状,并将其转换为PyTorch的Variable。然后,使用模型将查询点嵌入另一个空间。

if i == 0: - 如果这是第一个数据点,则将查询点设置为中心点。

16-19. 否则,将查询点添加到中心点。

center /= self.Ns - 计算中心点,这是所有数据点的平均值。

return center - 返回计算得到的中心点。

接下来是 train 方法:

23-24. 从给定的标签数据中选择类别索引并随机洗牌。选择特定数量的类别(self.Nc)。

25-30. 对于所选类别中的每一个,从其数据中随机选择支持集和查询集。

31-33. 使用 compute_center 方法计算每个类的中心点,并将其存储在列表中。同时将查询集也存储在列表中。

34-37. 初始化优化器,这里使用Adam优化算法,学习率设置为0.001。然后清空梯度缓存。

38-42. 计算损失函数值,该损失函数是根据自定义的损失函数计算的。然后进行反向传播以计算梯度。

optimizer.step() - 使用优化器更新模型的参数。

最后是自定义的损失函数 loss

45-46. 初始化一个张量 loss_1 为0,它用于累计损失值。

47-52. 对于每个类别(self.Nc),遍历查询集中的每个数据点。对于每个查询点,将其嵌入到另一个空间中,并计算它与每个中心点之间的欧氏距离。

53-57. 将所有的距离组合在一起,并使用softmax函数将其转换为概率值。然后,对于每个查询点,累加其与所有中心点的负对数似然损失值。

loss_1 /= self.Nq*self.Nc - 将损失值除以查询集中的数据点数量和类别数量以获得平均损失值。

return loss_1 - 返回计算得到的损失值。


相关文章:

原型网络Prototypical Network的python代码逐行解释,新手小白也可学会!!由于工作量大,准备整8个系列完事,-----系列5

文章目录 前言一、原始程序---计算原型,开始训练,计算损失二、每一行代码的详细解释2.1 粗略分析2.2 每一行代码详细分析 前言 承接系列4,此部分属于原型类中的计算原型,开始训练,计算损失函数。 一、原始程序—计算原…...

milvus数据库的数据管理-插入数据

一、插入数据 1.准备数据 数据必须与数据库中定义的字段元数据一致,与集合的模式匹配 import random data [[i for i in range(2000)],[str(i) for i in range(2000)],[i for i in range(10000, 12000)],[[random.random() for _ in range(2)] for _ in range(2…...

系列一、请谈谈你对JVM的理解?Java8的虚拟机有什么更新?

一、请谈谈你对JVM的理解?Java8的虚拟机有什么更新? JVM是Java虚拟机的意思。它是建立在操作系统之上的,由类加载器子系统、本地方法栈、Java栈、程序计数器、方法区、堆、本地方法库、本地方法接口、执行引擎组成。 (1&#xff0…...

恕我直言,大模型对齐可能无法解决安全问题,我们都被表象误导了

是否听说过“伪对齐”这一概念? 在大型语言模型(LLM)的评估中,研究者发现了一个引人注目的现象:当面对多项选择题和开放式问题时,模型的表现存在显著差异。这一差异根源在于模型对复杂概念的理解不够全面&…...

Apache Airflow (九) :Airflow Operators及案例之BashOperator及调度Shell命令及脚本

🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹…...

IJ中配置TortoiseSVN插件:

文章目录 一、报错情况:二、配置TortoiseSVN插件: 一、报错情况: 由于公司电脑加密,TortoiseSVN菜单没有提交和更新按钮,所以需要使用IJ的SVN进行代码相关操作 二、配置TortoiseSVN插件: 需要设置一个svn.…...

个人实现在线支付,一种另类的在线支付解决方案

Hi, I’m Shendi 个人实现在线支付,一种另类的在线支付解决方案 个人实现在线支付的方式 对于在线支付,最多的是接入微信与支付宝。但都需要营业执照,不适用于个人。 当然,可以去办理一个个体工商户,但对我这种小额收…...

浅谈智能安全配电装置应用在银行配电系统中

【摘要】银行是国家重点安全保护部分,关系到社会资金的稳定,也是消防重点单位。消防安全是银行工作的重要组成部分。在银行配电系统中应用智能安全配电装置,可以提高银行的智能控制水平,有效预防电气火灾。 【关键词】银行&#…...

macOS下如何使用Flask进行开发

👨🏻‍💻 热爱摄影的程序员 👨🏻‍🎨 喜欢编码的设计师 🧕🏻 擅长设计的剪辑师 🧑🏻‍🏫 一位高冷无情的编码爱好者 大家好,我是全栈工…...

记一次服务器配置文件获取OSS

一、漏洞原因 由于网站登录口未做双因子校验,导致可以通过暴力破解获取管理员账号,成功进入系统;未对上传的格式和内容进行校验,可以任意文件上传获取服务器权限;由于服务器上配置信息,可以进一步获取数据库权限和OSS管理权限。二、漏洞成果 弱口令获取网站的管理员权限通…...

合众汽车选用风河Wind River Linux系统

导读合众新能源汽车股份有限公司近日选择了Wind River Linux 用于开发合众智能安全汽车平台。 合众智能安全汽车平台(Hozon Automo-tive Intelligent Security Vehicle Plat-form)是一个面向高性能服务网关及车辆控制调度的硬件与软件框架,将于2024年中开始投入量产…...

PTA平台-2023年软件设计综合实践_5(指针及引用)

第一题 6-1 调和平均 - C/C 指针及引用 函数hmean()用于计算整数x和y的调和平均数,结果应保存在指针r所指向的浮点数对象中。当xy等于0时,函数返回0表示无法计算,否则返回1。数学上,两个数x和y的调和平均数 z 2xy/(xy) 。 直接…...

智慧卫生间

智慧卫生间 获取ApiKey/SecretKey获取Access_token获取卫生间实时数据返回说明 获取ApiKey/SecretKey ApiKey/SecretKey采用 线下获取的方式,手动分配。 获取Access_token 向授权服务地址http://xxxxxx:12345/token(示意)发送post请求,并在data中带上…...

Cadence virtuoso drc lvs pex 无法输入

问题描述:在PEX中的PEX options中 Ground node name 无法输入内容。 在save runset的时候也出现无法输入名称的情况 解决办法: copy一个.bashrc文件到自己的工作目录下 打开.bashrc文件 在.bashrc中加一行代码:unset XMODIFIERS 在终端sour…...

反序列化漏洞(2), 分析调用链, 编写POC

反序列化漏洞(2), 反序列化调用链分析 一, 编写php漏洞脚本 http://192.168.112.200/security/unserial/ustest.php <?php class Tiger{public $string;protected $var;public function __toString(){return $this->string;}public function boss($value){eval($valu…...

Pytorch reshape用法

这里-1是指未设定行数&#xff0c;程序自动计算&#xff0c;所以这里-1表示任一正整数 example reshape(-1, 1) 表示&#xff08;任意行&#xff0c;1列&#xff09;&#xff0c;4行4列变为16行1列reshape(1, -1) 表示&#xff08;1行&#xff0c;任意列&#xff09;&#xf…...

Latex 辅助写作工具

语法修改 https://app.grammarly.com/润色 文心一言、ChatGPTlatex 编辑公式 https://www.latexlive.comlatex 编辑表格 https://www.tablesgenerator.comlatex 图片转公式 https://www.tablesgenerator.com...

frp新版本frp_0.52.3设置

服务端 frps.toml cp /root/frp/frpc /usr/bin #bindPort 7000 bindPort 7000# 如果指定了“oidc”&#xff0c;将使用 OIDC 设置颁发 OIDC&#xff08;开放 ID 连接&#xff09;令牌。默认情况下&#xff0c;此值为“令牌”。auth.method “token” auth.method "…...

100G.的DDoS高防够用吗?

很多人以为100G的DDoS防御已经足够了&#xff0c;但殊不知DDoS攻击大小也是需要分行业类型的&#xff0c;比如游戏、金融、影视、电商甚至ZF或者行业龙头等等行业类型&#xff0c;都是大型DDoS攻击的重灾区&#xff0c;别说100G防御&#xff0c;就算300G防御服务器也不一定够用…...

【django+vue】项目搭建、解决跨域访问

笔记为自我总结整理的学习笔记&#xff0c;若有错误欢迎指出哟~ 【djangovue】项目搭建、解决跨域访问 djangovue介绍vue环境准备vue框架搭建1.创建vue项目2.配置vue项目3.进入项目目录4.运行项目5.项目文件讲解6.vue的扩展库或者插件 django环境准备django框架搭建1.使用conda…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 &#xff08;一&#xff09;项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台&#xff0c;其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言&#xff0c;首次接触 OpenBCI 设备时&#xff0c;往…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

21-Oracle 23 ai-Automatic SQL Plan Management(SPM)

小伙伴们&#xff0c;有没有迁移数据库完毕后或是突然某一天在同一个实例上同样的SQL&#xff0c; 性能不一样了、业务反馈卡顿、业务超时等各种匪夷所思的现状。 于是SPM定位开始&#xff0c;OCM考试中SPM必考。 其他的AWR、ASH、SQLHC、SQLT、SQL profile等换作下一个话题…...