当前位置: 首页 > news >正文

(论文阅读32/100)Flowing convnets for human pose estimation in videos

32.文献阅读笔记

简介

题目

Flowing convnets for human pose estimation in videos

作者

Tomas Pfister, James Charles, and Andrew Zisserman, ICCV, 2015.

原文链接

https://arxiv.org/pdf/1506.02897.pdf

关键词

Human Pose Estimation in Videos

研究问题

视频中的人体姿态估计

研究方法

总体流程如下:

一、使用光流将多帧信息结合起来,从而从时间上下文中获益。

输入t以及其前后n帧rgb图片,相邻帧的热图可以使用光流进行扭曲和对齐,从而有效地在时间上传播位置信息。离t帧越远的帧权重越低。

邻近帧作为强有力的 "专家意见",通过端对端反向传播来学习专家池权重。

分别回归输入图像中每个关节的关节位置热图。该热图(最后一个卷积层 conv8 的输出)是一个固定大小的 i × j × k 维立方体(此处为 64 × 64 × 7,表示 k = 7 个上半身关节)。在训练时,通过在ground truth关节位置放置一个方差固定的高斯,为每个关节分别合成ground truth标签热图

l2 loss:对predicted heatmap and the synthesised(合成) ground truth heatmap.之间的像素平方差进行惩罚

回归热图而不是(x, y)坐标的好处:可以理解失败并直观地看到网络的 "思考过程";由于设计上允许网络的输出是多模态的,即允许在多个空间位置有置信度,因此学习变得更加容易:在训练的早期,一个给定的关节可能会在多个位置发生反应;随着训练的进行,错误的反应会慢慢被抑制。相反,如果输出只有手腕(x,y)坐标,那么网络只有在预测正确时才会有较低的损失(即使它对正确的位置 "越来越有信心")。

提高热图的空间分辨率:(i) 使用最小池化(只有两个 2 × 2 最大池化层);(ii) 所有步长都是统一的(这样分辨率就不会降低)。除 conv9(池化层)外,所有层后都有 ReLU。

卷积层代替全连接层

二、在初始热图之外增加卷积层,以学习人体布局的隐式空间模型。这些层能够学习人体各部位之间的依赖关系。这些 "空间融合 "层可以消除运动学上无法实现的姿势估计失败。

学习关节的空间依赖关系:Spatial fusion layers

(conv7)作为输入,学习人体位置之间的依赖关系,将 conv7 和 conv3(跳转层)的连接作为输入,并通过另外五个带有 ReLU 的卷积层进行反馈,大内核用于扩大网络的感受野。在该网络的末端附加了一个单独的损失层,并在整个网络中进行反向传播。

研究结论

在“野外数据集”上表现远优于目前技术水平。

创新不足

未涉及多人检测,只检测人物上半身

额外知识

光流:计算机视觉--光流法(optical flow)简介-CSDN博客

是空间运动物体在观察成像平面上的像素运动的瞬时速度。

光流计算使用FastDeepFlow

相关文章:

(论文阅读32/100)Flowing convnets for human pose estimation in videos

32.文献阅读笔记 简介 题目 Flowing convnets for human pose estimation in videos 作者 Tomas Pfister, James Charles, and Andrew Zisserman, ICCV, 2015. 原文链接 https://arxiv.org/pdf/1506.02897.pdf 关键词 Human Pose Estimation in Videos 研究问题 视频…...

【设计一个缓存--针对各种类型的缓存】

设计一个缓存--针对各种类型的缓存 1. 设计顶层接口2. 设计抽象类 -- AbstractCacheManager3. 具体子类3.1 -- AlertRuleItemExpCacheManager3.2 -- AlertRuleItemSrcCacheManager 4. 类图关系 1. 设计顶层接口 // 定义为一个泛型接口,提供给抽象类使用 public interface Cach…...

Django部署时静态文件配置的坑

Django部署时静态文件配置配置的坑 近期有个需求是用django进行开发部署,结果发现静态文件配置的坑是真的多,另外网上很多的内容也讲不清楚原理,就是这样这样,又那样那样,进了不少坑,这里记录一下关于css,…...

Android---网络编程优化

网络请求操作是一个 App 的重要组成部分,程序大多数问题都是和网络请求有关。使用 OkHttp 框架后,可以通过 EventListener 来查看一次网络请求的详细情况。一次完整的网络请求会包含以下几个步骤。 也就是说,一次网络请求的操作是从 DNS 解析…...

《算法通关村——不简单的字符串转换问题》

《算法通关村——不简单的字符串转换问题》 8. 字符串转换整数 (atoi) 请你来实现一个 myAtoi(string s) 函数,使其能将字符串转换成一个 32 位有符号整数(类似 C/C 中的 atoi 函数)。 函数 myAtoi(string s) 的算法如下: 读入…...

给VSCode插上一双AI的翅膀

#AI编程助手哪家好?DevChat“真”好用# 文章目录 前言一、安装DevChat1.1、访问地址1.2、注册1.3、在VSCode里安装DevChat插件1.3.1、未安装状态1.3.2、已安装状态 二、设置Access Key2.1. 点击左下角管理(“齿轮”图标)—命令面板&#xff…...

2023年亚太杯数学建模思路 - 案例:异常检测

文章目录 赛题思路一、简介 -- 关于异常检测异常检测监督学习 二、异常检测算法2. 箱线图分析3. 基于距离/密度4. 基于划分思想 建模资料 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 一、简介 – 关于异常…...

机器学习的医疗乳腺癌数据的乳腺癌疾病预测

项目视频讲解:基于机器学习的医疗乳腺癌数据的乳腺癌疾病预测 完整代码数据分享_哔哩哔哩_bilibili 效果演示: 代码: #第一步!导入我们需要的工具 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inlin…...

解析:什么是生成式AI?与其他类型的AI有何不同?

原创 | 文 BFT机器人 快速浏览一下头条新闻,你会发现生成式AI似乎无处不在。事实上,一些新闻标题甚至可能是通过生成式AI编写的,例如OpenAI旗下的ChatGPT,这个聊天机器人已经展现出了生成看起来像人类所写文本的惊人能力。 当人们…...

国产化项目改造:使用达梦数据库和东方通组件部署,前后端分离框架

前提&#xff1a;前后端分离前后端包都要用war包。 1、springboot后端改变war包 pom文件添加 <packaging>war</packaging>添加依赖&#xff0c;并且支持tomcat<!-- war包 --><dependency><groupId>org.springframework.boot</groupId><…...

Nginx实现负载均衡

Nginx实现负载均衡 负载均衡的作用 1、解决单点故障&#xff0c;让web服务器构成一个集群 2、将请求平均下发给后端的web服务器 负载均衡的软硬件介绍 负载均衡软件&#xff1a; # nginx 四层负载均衡&#xff1a;stream&#xff08;nginx 1.9版本以后有stream模块&#x…...

SpringCloud 2022有哪些变化

目录 前提条件 AOT支持 Spring Native支持 前提条件 Spring Cloud 2022.0.0是构建在Spring Framework 6.0和Spring Boot 3.0 之上的一S个主要版本。 JDK要求最低需要是Java 17J2EE要求最低需要Jakarta EE 9 AOT支持 Spring cloud 2022支持AOT编译&#xff0c;它是将程序源…...

如何快速本地搭建悟空CRM结合内网穿透工具高效远程办公

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;数据结构、Cpolar杂谈 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 &#x1f4cb;前言一. 无需公网IP&#xff0c;使用cpolar实现悟空CRM远程访问二. 通过公网来访问公司…...

Docker打包Python项目

1. 简介 Docker是一种开源的容器化平台&#xff0c;可以将应用程序及其依赖项打包到一个轻量级、可移植的容器中。通过使用Docker&#xff0c;可以简化Python项目的部署和运行&#xff0c;提高开发效率和应用程序的可移植性。 本文将介绍如何使用Docker来打包Python项目。我们…...

【Java并发编程一】并发与并行

为什么引入并发 摩尔定理逐渐失效&#xff0c;单核性能很难提升&#xff0c;通过组合多核性能来进一步满足实际需要&#xff0c;从而引入并发编程。在大部分场景下&#xff0c;并行是由于串行的&#xff0c;并行可以优化非关键节点的时间消耗。 并发的三大特性 原子性  某个…...

MFC/QT 一些快忘记的细节:

1&#xff1a;企业应用中&#xff0c;MFC平台除了用常见的对话框模式还有一种常用的就是单文档模式&#xff0c; 维护别人的代码&#xff0c;不容易区分,看它与程预序认同名cpp&#xff0c;就知道了&#xff0c;比如项目名称为 DoCMFCDemo&#xff0c;那么就看BOOL CDocMFCDe…...

在服务器上部署MVC 6应用程序

在服务器上成功部署MVC 6应用程序&#xff08;现在更为称为ASP.NET Core MVC&#xff09;涉及一系列步骤。以下是一般的指导步骤&#xff1a; 1. 准备服务器环境&#xff1a; - 确保服务器上安装了.NET Core Runtime和.NET Core SDK。可以从[.NET下载页面](https://dotnet.mi…...

golang学习笔记——斐波纳契数列

斐波纳契数列 编写一个程序来计算某个数字的斐波纳契数列。 斐波那契数列是一个数字列表&#xff0c;其中每个数字是前两个斐波那契数字之和。 例如&#xff0c;数字 6 的序列是 1,1,2,3,5,8&#xff0c;数字 7 的序列是 1,1,2,3,5,8,13&#xff0c;数字 8 的序列是 1,1,2,3,5…...

学习raft协议(1)

CAP C: 一致性 强调数据的正确性&#xff0c;每次读操作&#xff0c;要么读到最新&#xff0c;要么读失败 A:可用性 不发生错误&#xff0c;也不能出现过长的等待时间. P:分区容错性 在网络环境不可靠的背景下&#xff0c;整个系统仍然是正常运作的两种流派 &#xff08;1&am…...

SpringSecurity+jwt使用

参考文章链接 自定义SpringSecurity用户 package com.daben.springsecurityjwt.vo;import com.daben.springsecurityjwt.entity.SysUser; import org.springframework.security.core.GrantedAuthority; import org.springframework.security.core.userdetails.User; import j…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号&#xff0c;此时&#xff0c;我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG

TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码&#xff1a;HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...