当前位置: 首页 > news >正文

2023年亚太杯数学建模思路 - 案例:异常检测

文章目录

    • 赛题思路
      • 一、简介 -- 关于异常检测
        • 异常检测
        • 监督学习
      • 二、异常检测算法
        • 2. 箱线图分析
        • 3. 基于距离/密度
        • 4. 基于划分思想
  • 建模资料

赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

一、简介 – 关于异常检测

异常检测(outlier detection)在以下场景:

  • 数据预处理
  • 病毒木马检测
  • 工业制造产品检测
  • 网络流量检测

等等,有着重要的作用。由于在以上场景中,异常的数据量都是很少的一部分,因此诸如:SVM、逻辑回归等分类算法,都不适用,因为:

监督学习算法适用于有大量的正向样本,也有大量的负向样本,有足够的样本让算法去学习其特征,且未来新出现的样本与训练样本分布一致。

以下是异常检测和监督学习相关算法的适用范围:

异常检测
  • 信用卡诈骗
  • 制造业产品异常检
  • 数据中心机器异常检
  • 入侵检测
监督学习
  • 垃圾邮件识别
  • 新闻分类

二、异常检测算法

在这里插入图片描述
在这里插入图片描述

import tushare
from matplotlib import pyplot as pltdf = tushare.get_hist_data("600680")
v = df[-90: ].volume
v.plot("kde")
plt.show()

近三个月,成交量大于200000就可以认为发生了异常(天量,嗯,要注意风险了……)

在这里插入图片描述
在这里插入图片描述

2. 箱线图分析
import tushare
from matplotlib import pyplot as pltdf = tushare.get_hist_data("600680")
v = df[-90: ].volume
v.plot("kde")
plt.show()

在这里插入图片描述
大体可以知道,该股票在成交量少于20000,或者成交量大于80000,就应该提高警惕啦!

3. 基于距离/密度

典型的算法是:“局部异常因子算法-Local Outlier Factor”,该算法通过引入“k-distance,第k距离”、“k-distance neighborhood,第k距离邻域”、“reach-distance,可达距离”、以及“local reachability density,局部可达密度 ”和“local outlier factor,局部离群因子”,来发现异常点。

用视觉直观的感受一下,如图2,对于C1集合的点,整体间距,密度,分散情况较为均匀一致,可以认为是同一簇;对于C2集合的点,同样可认为是一簇。o1、o2点相对孤立,可以认为是异常点或离散点。现在的问题是,如何实现算法的通用性,可以满足C1和C2这种密度分散情况迥异的集合的异常点识别。LOF可以实现我们的目标。

在这里插入图片描述
在这里插入图片描述

4. 基于划分思想

典型的算法是 “孤立森林,Isolation Forest”,其思想是:

假设我们用一个随机超平面来切割(split)数据空间(data space), 切一次可以生成两个子空间(想象拿刀切蛋糕一分为二)。之后我们再继续用一个随机超平面来切割每个子空间,循环下去,直到每子空间里面只有一个数据点为止。直观上来讲,我们可以发现那些密度很高的簇是可以被切很多次才会停止切割,但是那些密度很低的点很容易很早的就停到一个子空间了。

这个的算法流程即是使用超平面分割子空间,然后建立类似的二叉树的过程:

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForestrng = np.random.RandomState(42)# Generate train data
X = 0.3 * rng.randn(100, 2)
X_train = np.r_[X + 1, X - 3, X - 5, X + 6]
# Generate some regular novel observations
X = 0.3 * rng.randn(20, 2)
X_test = np.r_[X + 1, X - 3, X - 5, X + 6]
# Generate some abnormal novel observations
X_outliers = rng.uniform(low=-8, high=8, size=(20, 2))# fit the model
clf = IsolationForest(max_samples=100*2, random_state=rng)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)# plot the line, the samples, and the nearest vectors to the plane
xx, yy = np.meshgrid(np.linspace(-8, 8, 50), np.linspace(-8, 8, 50))
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)plt.title("IsolationForest")
plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r)b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white')
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green')
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red')
plt.axis('tight')
plt.xlim((-8, 8))
plt.ylim((-8, 8))
plt.legend([b1, b2, c],["training observations","new regular observations", "new abnormal observations"],loc="upper left")
plt.show()

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

相关文章:

2023年亚太杯数学建模思路 - 案例:异常检测

文章目录 赛题思路一、简介 -- 关于异常检测异常检测监督学习 二、异常检测算法2. 箱线图分析3. 基于距离/密度4. 基于划分思想 建模资料 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 一、简介 – 关于异常…...

机器学习的医疗乳腺癌数据的乳腺癌疾病预测

项目视频讲解:基于机器学习的医疗乳腺癌数据的乳腺癌疾病预测 完整代码数据分享_哔哩哔哩_bilibili 效果演示: 代码: #第一步!导入我们需要的工具 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inlin…...

解析:什么是生成式AI?与其他类型的AI有何不同?

原创 | 文 BFT机器人 快速浏览一下头条新闻,你会发现生成式AI似乎无处不在。事实上,一些新闻标题甚至可能是通过生成式AI编写的,例如OpenAI旗下的ChatGPT,这个聊天机器人已经展现出了生成看起来像人类所写文本的惊人能力。 当人们…...

国产化项目改造:使用达梦数据库和东方通组件部署,前后端分离框架

前提&#xff1a;前后端分离前后端包都要用war包。 1、springboot后端改变war包 pom文件添加 <packaging>war</packaging>添加依赖&#xff0c;并且支持tomcat<!-- war包 --><dependency><groupId>org.springframework.boot</groupId><…...

Nginx实现负载均衡

Nginx实现负载均衡 负载均衡的作用 1、解决单点故障&#xff0c;让web服务器构成一个集群 2、将请求平均下发给后端的web服务器 负载均衡的软硬件介绍 负载均衡软件&#xff1a; # nginx 四层负载均衡&#xff1a;stream&#xff08;nginx 1.9版本以后有stream模块&#x…...

SpringCloud 2022有哪些变化

目录 前提条件 AOT支持 Spring Native支持 前提条件 Spring Cloud 2022.0.0是构建在Spring Framework 6.0和Spring Boot 3.0 之上的一S个主要版本。 JDK要求最低需要是Java 17J2EE要求最低需要Jakarta EE 9 AOT支持 Spring cloud 2022支持AOT编译&#xff0c;它是将程序源…...

如何快速本地搭建悟空CRM结合内网穿透工具高效远程办公

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;数据结构、Cpolar杂谈 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 &#x1f4cb;前言一. 无需公网IP&#xff0c;使用cpolar实现悟空CRM远程访问二. 通过公网来访问公司…...

Docker打包Python项目

1. 简介 Docker是一种开源的容器化平台&#xff0c;可以将应用程序及其依赖项打包到一个轻量级、可移植的容器中。通过使用Docker&#xff0c;可以简化Python项目的部署和运行&#xff0c;提高开发效率和应用程序的可移植性。 本文将介绍如何使用Docker来打包Python项目。我们…...

【Java并发编程一】并发与并行

为什么引入并发 摩尔定理逐渐失效&#xff0c;单核性能很难提升&#xff0c;通过组合多核性能来进一步满足实际需要&#xff0c;从而引入并发编程。在大部分场景下&#xff0c;并行是由于串行的&#xff0c;并行可以优化非关键节点的时间消耗。 并发的三大特性 原子性  某个…...

MFC/QT 一些快忘记的细节:

1&#xff1a;企业应用中&#xff0c;MFC平台除了用常见的对话框模式还有一种常用的就是单文档模式&#xff0c; 维护别人的代码&#xff0c;不容易区分,看它与程预序认同名cpp&#xff0c;就知道了&#xff0c;比如项目名称为 DoCMFCDemo&#xff0c;那么就看BOOL CDocMFCDe…...

在服务器上部署MVC 6应用程序

在服务器上成功部署MVC 6应用程序&#xff08;现在更为称为ASP.NET Core MVC&#xff09;涉及一系列步骤。以下是一般的指导步骤&#xff1a; 1. 准备服务器环境&#xff1a; - 确保服务器上安装了.NET Core Runtime和.NET Core SDK。可以从[.NET下载页面](https://dotnet.mi…...

golang学习笔记——斐波纳契数列

斐波纳契数列 编写一个程序来计算某个数字的斐波纳契数列。 斐波那契数列是一个数字列表&#xff0c;其中每个数字是前两个斐波那契数字之和。 例如&#xff0c;数字 6 的序列是 1,1,2,3,5,8&#xff0c;数字 7 的序列是 1,1,2,3,5,8,13&#xff0c;数字 8 的序列是 1,1,2,3,5…...

学习raft协议(1)

CAP C: 一致性 强调数据的正确性&#xff0c;每次读操作&#xff0c;要么读到最新&#xff0c;要么读失败 A:可用性 不发生错误&#xff0c;也不能出现过长的等待时间. P:分区容错性 在网络环境不可靠的背景下&#xff0c;整个系统仍然是正常运作的两种流派 &#xff08;1&am…...

SpringSecurity+jwt使用

参考文章链接 自定义SpringSecurity用户 package com.daben.springsecurityjwt.vo;import com.daben.springsecurityjwt.entity.SysUser; import org.springframework.security.core.GrantedAuthority; import org.springframework.security.core.userdetails.User; import j…...

html-网站菜单-点击显示导航栏

一、效果图 1.点击显示菜单栏&#xff0c;点击x号关闭&#xff1b; 2.点击一级菜单&#xff0c;展开显示二级&#xff0c;并且加号变为减号&#xff1b; 3.点击其他一级导航&#xff0c;自动收起展开的导航。 二、代码实现 <!DOCTYPE html> <html><head>&…...

【C++函数的进化】函数指针,模板,仿函数,lambda表达式

/*** poject * author jUicE_g2R(qq:3406291309)* file C函数的进化* * language C* EDA Base on VS2022* editor Obsidian&#xff08;黑曜石笔记软件&#xff09;* * copyright 2023* COPYRIGHT 原创学习笔记&#xff1a;转载需获得博…...

云服务器windows service2022 部署git服务器

1 安装 下载地址gitblit 解压到你的一个目录,我这里给的是C:\gitblit 根据官网提示要下载jre or jdk7.0,这里建议使用下载jre (jdk 有时候运行出问题,或者2个都安装),自行安装java,这里不做环境配置的说明 进入c:\gitblit\data 目录里面找到,defaults.properties 文件,编辑主…...

Linux_Docker修改Docker Root Dir

今天遇到需求&#xff0c;要修改一下docker容器和镜像的存储位置&#xff0c;默认位置为/var/lib/docker目录下&#xff0c;要修改到/new/dockerFile目录下。 停止docker服务 sudo service docker stop 备份docker容器镜像 移动/var/lib/docker目录下的文件到/dockerFile目录…...

解决requests 2.28.x版本SSL错误:证书验证失败

1、问题背景 在使用requests 2.28.1版本时&#xff0c;我进行HTTP post传输报告负载时&#xff0c;由于SSL验证设置为True&#xff0c;请求失败&#xff0c;错误如下&#xff1a;(Caused by SSLError(SSLCertVerificationError(1, ‘[SSL: CERTIFICATE_VERIFY_FAILED] certifi…...

【开源】基于Vue.js的开放实验室管理系统的设计和实现

项目编号&#xff1a; S 013 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S013&#xff0c;文末获取源码。} 项目编号&#xff1a;S013&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 实验室类型模块2.2 实验室模块2.3 实…...

使用composer安装ffmpeg的步骤

以下是使用composer安装ffmpeg的步骤&#xff1a; 1.在laravel根目录下执行以下命令安装ffmpeg&#xff1a; composer require php-ffmpeg/php-ffmpeg 2.如果不指定版本号&#xff0c;则默认使用0.14版本。 3.执行以上命令后&#xff0c;composer会自动下载并安装ffmpeg。 …...

RT-DETR优化策略:轻量级Backbone改进 | 高效模型 (Efficient MOdel, EMO),现代倒残差移动模块设计|ICCV2023

🚀🚀🚀本文改进:面向移动端的轻量化网络模型——EMO,它能够以相对较低的参数和 FLOPs 超越了基于 CNN/Transformer 的 SOTA 模型,支持四个版本EMO_1M, EMO_2M, EMO_5M, EMO_6M,参数量如下,相对于自带的rtdetr-l、rtdetr-x有很大提升 layersparametersgradientsEMO_1…...

一些nginx命令

1.停止nginx nginx -s quit systemctl stop nginx.service 立即停止 nginx-s stop 杀死nginx进程 killall nginx 2.启动命令 nginx systemctl start nginx.service 3.查看nginx进程 ps aux | grep nginx 4.重启nginx服务 systemctl restart nginx.service 5.重载…...

WPF自定义控件介绍

在WPF中&#xff0c;自定义控件通常是指从头开始创建一个新控件或从现有控件继承并扩展其功能。自定义控件与用户控件&#xff08;User Control&#xff09;不同&#xff0c;用户控件是通过组合其他控件来构建的&#xff0c;而自定义控件通常涉及对控件的更底层的渲染和行为进行…...

JUNIT使用和注意、以及断言的介绍使用、SpringBoot Test测试类的使用、maven配置使用junit详细介绍

参考文章&#xff1a; https://www.cnblogs.com/zhukaile/p/14514238.html&#xff0c;https://blog.csdn.net/qq_36448800/article/details/126438339 一、什么是单元测试 在平时的开发当中&#xff0c;一个项目往往包含了大量的方法&#xff0c;可能有成千上万个。如何去保…...

强化学习在文生图中的应用:Training Diffusion Models with Reinforcement Learning

论文链接:Training Diffusion Models with Reinforcement Learning项目地址:Training Diffusion Models with Reinforcement Learning官方代码:https://github.com/kvablack/ddpo-pytorch/tree/maintrl实现:https://huggingface.co/docs/trl/ddpo_trainer🤗关注公众号 fu…...

【C语言】数组下标为啥从0开始?下标越界访问一定报错吗?

本篇文章目录 0. 相关文章1. 下标从0开始问题2. 数组下标越界不报错问题 0. 相关文章 指针与指针变量数组名不是首元素地址的的2个例外拨开指针和数组名之间的迷雾 1. 下标从0开始问题 原因是&#xff1a;数组下标访问本质是“指针解引用操作”&#xff0c;而指针又是地址&am…...

机器学习-搜索技术:从技术发展到应用实战的全面指南

在本文中&#xff0c;我们全面探讨了人工智能中搜索技术的发展&#xff0c;从基础算法如DFS和BFS&#xff0c;到高级搜索技术如CSP和优化问题的解决方案&#xff0c;进而探索了机器学习与搜索的融合&#xff0c;最后展望了未来的趋势和挑战&#xff0c;提供了对AI搜索技术深刻的…...

Axelar、J.P.Morgan Onyx、Apollo 完成概念验证,向跨区块链自动化投资领域探索

J.P.Morgan Onyx、Apollo、Axelar、Oasis Pro 以及 Provenance Block Chain 展开合作&#xff0c;共同进行互操作性概念验证&#xff08;Proof-of-Concept&#xff0c;PoC)。 新加坡 — Axelar Inc.、Oasis Pro 、Provenance Blockchain 与 J.P.Morgan Onyx 以及 Apollo 通过新…...

wpf devexpress添加TreeListControl到项目

此教程示范如何添加TreeListControl到项目和绑定控件自引用数据源&#xff1a; 添加数据模型 绑定tree&#xff0c;并添加如下字段到数据源对象&#xff1a; Key字段包含唯一值索引节点 Parent字段包含父索引节点 添加数据模型&#xff08;Employee和Staff类&#xff09;到…...