当前位置: 首页 > news >正文

选硬币该用动态规划

选硬币:
现有面值分别为1角1分,5分,1分的硬币,请给出找1角5分钱的最佳方案。

#include <iostream>
#include <vector>std::vector<int> findChange(int amount) {std::vector<int> coins = {11, 5, 1}; // 按面值从大到小排序的硬币面值std::vector<int> result(coins.size(), 0); // 用于存储每种硬币的数量for (int i = 0; i < coins.size(); i++) {int numCoins = amount / coins[i]; // 计算当前硬币面值的数量result[i] = numCoins; // 存储数量amount -= numCoins * coins[i]; // 更新剩余金额}return result;
}int main() {int amount = 15; // 需要找零的金额,单位为分std::vector<int> change = findChange(amount);std::cout << "找零方案为:" << std::endl;std::cout << "1角1分硬币数量:" << change[0] << std::endl;std::cout << "5分硬币数量:" << change[1] << std::endl;std::cout << "1分硬币数量:" << change[2] << std::endl;return 0;
}

一开始我想的很简单,以为是简单的求整除数。
但要是你仔细一想,这肯定是不对的,不是所有问题都能用贪心。
在求最优的过程中,贪心和动态规划一直是一对冤家,到底选择哪个,难道了很多英雄好汉,所以最好的方式就是具体问题具体分析,只有结合实际情况才能选出最适合问题的算法。
我们都知道贪心的局限性,只能求出其中一个解的,但是不是最优需要考量。
让我们来看一下用上面贪心求出来的解:
在这里插入图片描述
但这肯定不是最优解,我们在找零的时候遵循的规则是用最少的钱张数交给别人,这样才方便。
所以最佳找零方案为:
1角1分硬币数量:0
5分硬币数量:3
1分硬币数量:0
让我们来看看用动态规划写出来的代码:

#include <iostream>
using namespace std;const int N = 10005;
const int INF = 0x3f3f3f3f; 
int f[N], a[N];int main() {int n, w;cin >> n >> w;for (int i = 0; i < n; i++) {cin >> a[i];}for (int i = 1; i <= w; i++) {f[i] = INF;}for (int i = 0; i < n; i++) {for (int j = a[i]; j <= w; j++) {f[j] = min(f[j], f[j - a[i]] + 1);}}if (f[w] == INF) {cout << -1; } else {cout << f[w];}return 0;
}

在这里插入图片描述
结果和我们预期的完全一样

总结

选硬币在动态规划中是一种叫状态表示的题型,通常用一维/二维的数组组成状态转移方程,通过更新数组来达到获取最优解的目标

相关文章:

选硬币该用动态规划

选硬币&#xff1a; 现有面值分别为1角1分&#xff0c;5分&#xff0c;1分的硬币&#xff0c;请给出找1角5分钱的最佳方案。 #include <iostream> #include <vector>std::vector<int> findChange(int amount) {std::vector<int> coins {11, 5, 1}; /…...

LeetCode 2342. 数位和相等数对的最大和:哈希表

【LetMeFly】2342.数位和相等数对的最大和&#xff1a;哈希表 力扣题目链接&#xff1a;https://leetcode.cn/problems/max-sum-of-a-pair-with-equal-sum-of-digits/ 给你一个下标从 0 开始的数组 nums &#xff0c;数组中的元素都是 正 整数。请你选出两个下标 i 和 j&…...

Vulkan渲染引擎开发教程 一、开发环境搭建

一 安装 Vulkan SDK Vulkan SDK 就是我们要搞的图形接口 首先到官网下载SDK并安装 https://vulkan.lunarg.com/sdk/home 二 安装 GLFW 窗口库 GLFW是个跨平台的小型窗口库&#xff0c;也就是显示窗口&#xff0c;图形的载体 去主页下载并安装&#xff0c;https://www.glfw.…...

(带教程)商业版SEO关键词按天计费系统:关键词排名优化、代理服务、手机自适应及搭建教程

源码简介&#xff1a; 1、会员管理&#xff1a; 该系统分为三个级别的会员流程&#xff1a;总站管理员、代理与会员&#xff08;会员有普通会员、中级会员和高级会员三个等级&#xff09;。总站管理员可以添加代理用户并为其充值余额&#xff0c;代理用户可以为普通用户充值余…...

IDEA 快捷键汇总

目录 1、altinsert 2、ctrl/ 3、altenter 4、alt回车 5、ctrlD 6、ctrlaltL 7、ctrl点击 8、alt左键向下拉 9、ctrlaltv 10、ctrlaltwint 1、altinsert 快速创建代码&#xff0c;可以快速创建类中get set tostring等方法 2、ctrl/ 单行注释 3、altenter…...

目标检测YOLO实战应用案例100讲-基于机器视觉的水稻病虫害监测预警

目录 前言 国内外研究现状 国外研究现状 国内研究现状 2 相关理论与技术...

OrthoNets:正交信道注意网络

文章目录 摘要1、简介2、相关工作3、方法4、实验设置及结果5、论述6、结论摘要 链接:https://arxiv.org/pdf/2311.03071v2.pdf 设计有效的通道注意力机制要求人们找到一种有损压缩方法,以实现最佳特征表示。尽管该领域近年来取得了进展,但仍然存在一个未解决的问题。FcaNet…...

C_12练习题

一、单项选择题(本大题共20小题,每小题2分&#xff0c;共40分。在每小题给出的四个备选项中&#xff0c;选出一个正确的答案&#xff0c;并将所选项前的字母填写在答题纸的相应位置上。) C 风格的注释&#xff0c;也称块注释或多行注释&#xff0c;以&#xff08;&#xff09;…...

导航守卫有哪三种?

导航守卫主要分为三种&#xff1a; 全局前置守卫&#xff1a;使用 router.beforeEach 注册&#xff0c;作用是在路由切换开始前进行拦截和处理&#xff0c;可以用来进行一些全局的权限校验、登录状态检查等操作。 全局解析守卫&#xff1a;使用 beforeResolve 注册&#xff0c…...

强烈 推荐 13 个 Web前端在线代码IDE

codesandbox.io&#xff08;国外&#xff0c;提供免费空间&#xff09; 网址&#xff1a;https://codesandbox.io/ CodeSandbox 专注于构建完整的 Web 应用程序&#xff0c;支持多种流行的前端框架和库&#xff0c;例如 React、Vue 和 Angular。它提供了一系列增强的功能&…...

网络协议 WebSocket

一、介绍 WebSocket 是基于 TCP 的一种新的网络协议。它实现了浏览器与服务器全双工通信——浏览器和服务器只需要完成一次握手&#xff0c;两者之间就可以创建持久性的连接&#xff0c; 并进行双向数据传输 1、HTTP协议和WebSocket协议对比 HTTP 是短连接WebSocket 是长连接H…...

路径操作 合法路径名

python中路径的三种合法表示&#xff1a;在路径前面加上r、分隔符使用/。 在路径前面加上r python中在前面加上r&#xff0c;是防止字符转义。 例如&#xff1a;这样一个路径&#xff1a; \Undergraduate\School\Programme\Python_Learnpython会将这个字符串的**\和\后面的…...

JavaEE初阶 01 计算机是如何工作的

前言 今天开始进行对JavaEE的一些基本总结,希望大家能在阅读中有所收获,如有错误还望多多指正. 1.冯诺依曼体系结构 这个体系结构相信学计算机的同学都不陌生,但是你真的知道这个体系结构说的是什么嘛?请听我娓娓道来.首先我先给出一张冯诺依曼体系结构的简图 你可以理解为当前…...

【shell 常用脚本30例】

先了解下编写Shell过程中注意事项 开头加解释器&#xff1a;#!/bin/bash语法缩进&#xff0c;使用四个空格&#xff1b;多加注释说明。命名建议规则&#xff1a;全局变量名大写、局部变量小写&#xff0c;函数名小写&#xff0c;名字体现出实际作用。默认变量是全局的&#xf…...

【我和Python算法的初相遇】——体验递归的可视化篇

&#x1f308;个人主页: Aileen_0v0 &#x1f525;系列专栏:PYTHON数据结构与算法学习系列专栏&#x1f4ab;"没有罗马,那就自己创造罗马~" 目录 递归的起源 什么是递归? 利用递归解决列表求和问题 递归三定律 递归应用-整数转换为任意进制数 递归可视化 画…...

【C语言的秘密】密探—深究C语言中多组输入的秘密!

场景引入&#xff1a; 你是否在刷题过程中&#xff0c;经常遇到以下场景呢&#xff1f; 场景一&#xff1a; 场景二&#xff1a; 从这些题上都能看见输入描述中提出了一条多组输入&#xff0c;那啥是多组输入&#xff1f;如何实现它呢&#xff1f; 多组输入&#xff1a;在输入…...

ClickHouse 语法优化规则

ClickHouse 的 SQL 优化规则是基于RBO(Rule Based Optimization)&#xff0c;下面是一些优化规则 1 准备测试用表 1&#xff09;上传官方的数据集 将visits_v1.tar和hits_v1.tar上传到虚拟机&#xff0c;解压到clickhouse数据路径下 // 解压到clickhouse数据路径 sudo tar -xvf…...

3-运行第一个docker image-hello world

CentOS7.9下安装完成docker后,我们开始部署第一个docker image-hello world 1.以root用户登录CentOS7.9服务器,拉取centos7 images 命令: docker pull hello-world [root@centos79 ~]# docker pull hello-world Using default tag: latest latest: Pulling from library…...

【漏洞复现】泛微e-Weaver SQL注入

漏洞描述 泛微e-Weaver&#xff08;FANWEI e-Weaver&#xff09;是一款广泛应用于企业数字化转型领域的集成协同管理平台。作为中国知名的企业级软件解决方案提供商&#xff0c;泛微软件&#xff08;广州&#xff09;股份有限公司开发和推广了e-Weaver平台。 泛微e-Weaver旨在…...

「git 系列」git 如何存储代码的?

这里写自定义目录标题 git 文件存储位置git 数据模型示例分析分析前准备命令哈希值 具体示例 不同版本的提交&#xff0c;git 做了什么工作&#xff1f;snapshot vs delta-based vs backup参考资料 git 文件存储位置 想要了解如何存储&#xff0c;首先需要知道存储位置。 当我…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

从零开始了解数据采集(二十八)——制造业数字孪生

近年来&#xff0c;我国的工业领域正经历一场前所未有的数字化变革&#xff0c;从“双碳目标”到工业互联网平台的推广&#xff0c;国家政策和市场需求共同推动了制造业的升级。在这场变革中&#xff0c;数字孪生技术成为备受关注的关键工具&#xff0c;它不仅让企业“看见”设…...

2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案

一、延迟敏感行业面临的DDoS攻击新挑战 2025年&#xff0c;金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征&#xff1a; AI驱动的自适应攻击&#xff1a;攻击流量模拟真实用户行为&#xff0c;差异率低至0.5%&#xff0c;传统规则引…...

前端工具库lodash与lodash-es区别详解

lodash 和 lodash-es 是同一工具库的两个不同版本&#xff0c;核心功能完全一致&#xff0c;主要区别在于模块化格式和优化方式&#xff0c;适合不同的开发环境。以下是详细对比&#xff1a; 1. 模块化格式 lodash 使用 CommonJS 模块格式&#xff08;require/module.exports&a…...

Python爬虫(四):PyQuery 框架

PyQuery 框架详解与对比 BeautifulSoup 第一部分&#xff1a;PyQuery 框架介绍 1. PyQuery 是什么&#xff1f; PyQuery 是一个 Python 的 HTML/XML 解析库&#xff0c;它采用了 jQuery 的语法风格&#xff0c;让开发者能够用类似前端 jQuery 的方式处理文档解析。它的核心特…...