当前位置: 首页 > news >正文

15分钟,不,用模板做数据可视化只需5分钟

测试显示,一个对奥威BI软件不太熟悉的人来开发数据可视化报表,要15分钟,而当这个人去套用数据可视化模板做报表,只需5分钟!

数据可视化模板是奥威BI上的一个特色功能板块。用户下载后更新数据源,立即就能获得新报表,完成BI数据可视化分析。

数据可视化模板:所见即所得

你在模板秀中看到的数据可视化模板是什么样,下载套用后,它就是什么样,只一点,数据会变。套用前,模板里用的是虚拟数据;套用后,报表上分析展示的是用户自己的数据。

套用模板做分析,可个性化修改

修改的范围基本无限制,可对模板里的数据可视化图表、内存计算(分析指标计算)、智能分析功能(钻取、联动、筛选)以及图表样式做个性化的修改。

由于模板支持做任意修改,因此可以很好地满足不同分析场景下的数据分析需求。
在这里插入图片描述

模板封装成套,一经下载套用,立得系统化数据分析报表

奥威BI软件将不同主题的数据可视化模板集中起来,封装成套,形成多套系统化的BI数据可视化模板套装,且可无缝对接金蝶、用友主流ERP。

除此之外,还有数个行业的BI数据可视化模板套装,如BI零售数据分析套装里封装了“人、货、场、供、财“主题的BI数据可视化模型,重点关注零售数据分析关键指标、数据情况。比如在门店管理驾驶中集中分析展现人效、坪效、客单价、销售额等关键指标,又对商品品类结构、不同时间销售趋势等做了可视化的分析展现。

套用奥威BI的BI数据可视化模板,不仅报表做得快,数据分析地清楚,更能帮助业务人及时摸清数据的来龙去脉,排查问题原因,对解决问题、监控决策执行等起到了决定性作用。

相关文章:

15分钟,不,用模板做数据可视化只需5分钟

测试显示,一个对奥威BI软件不太熟悉的人来开发数据可视化报表,要15分钟,而当这个人去套用数据可视化模板做报表,只需5分钟! 数据可视化模板是奥威BI上的一个特色功能板块。用户下载后更新数据源,立即就能获…...

C 语言字符串函数

C 语言字符串函数 在本文中,您将学习使用诸如gets(),puts,strlen()等库函数在C中操作字符串。您将学习从用户那里获取字符串并对该字符串执行操作。 您通常需要根据问题的需要来操作字符串。大多数字符串操作都可以自定义方法完成&#xff…...

nvm安装详细教程(卸载旧的nodejs,安装nvm、node、npm、cnpm、yarn及环境变量配置)

文章目录 一、完全卸载旧的nodejs1、打开系统的控制面板,点击卸载程序,卸载nodejs(1)打开系统的控制面板,点击程序下的卸载程序(2)找到node.js,鼠标右击出现下拉框,点卸载…...

详细步骤记录:持续集成Jenkins自动化部署一个Maven项目

Jenkins自动化部署 提示:本教程基于CentOS Linux 7系统下进行 Jenkins的安装 1. 下载安装jdk11 官网下载地址:https://www.oracle.com/cn/java/technologies/javase/jdk11-archive-downloads.html 本文档教程选择的是jdk-11.0.20_linux-x64_bin.tar.g…...

Python学习(一)基础语法

文章目录 1. 入门1.1 解释器的作用1.2 下载1.3 基础语法输入输出语法与引号注释:变量: 数据类型与四则运算数据类型四则运算数据类型的查看type()数据类型的转换int()、int()、float() 流程控制格式化输出循环与遍历逻辑运算符list遍历字典dict遍历 跳出…...

【C刷题】day7

🎥 个人主页:深鱼~🔥收录专栏:【C】每日一练🌄欢迎 👍点赞✍评论⭐收藏 一、选择题 1、以下对C语言函数的有关描述中,正确的有【多选】( ) A: 在C语言中,一…...

数据挖掘复盘——apriori

read_csv函数返回的数据类型是Dataframe类型 对于Dataframe类型使用条件表达式 dfdf.loc[df.loc[:,0]2]df: 这是一个DataFrame对象的变量名,表示一个二维的表格型数据结构,类似于电子表格或SQL表。 df.loc[:, 0]: 这是使用DataFrame的.loc属性来进行…...

Windows10下Maven3.9.5安装教程

文章目录 1.下载maven2.安装3.配置系统变量3.1.新建系统变量 MAVEN_HOME3.2.编辑系统变量Path 4.CMD命令测试是否安装成功5.配置maven本地仓库6.配置国内镜像仓库 1.下载maven 官网 https://maven.apache.org/download.cgi 点击下载。 2.安装 解压到指定目录 D:\installSoft…...

【开源】基于JAVA的校园失物招领管理系统

项目编号: S 006 ,文末获取源码。 \color{red}{项目编号:S006,文末获取源码。} 项目编号:S006,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 招领管理模块2.2 寻物管理模块2.3 系…...

requests爬虫IP连接初始化问题及解决方案

问题背景 在使用HTTPS爬虫IP连接时,如果第一次请求是chunked方式,那么HTTPS爬虫IP连接将不会被初始化。这个问题可能会导致403错误,或者在使用HTTPS爬虫IP时出现SSL错误。 解决方案 为了解决这个问题,我们可以在requests库的ada…...

Argo Rollouts结合Service进行Blue-Green部署

删除03 部署04 rootk8s-master01:~/learning-jenkins-cicd/09-argocd-and-rollout/rollout-demos# kubectl delete -f 03-rollouts-with-prometheus-analysis.yaml rootk8s-master01:~/learning-jenkins-cicd/09-argocd-and-rollout/rollout-demos# kubectl apply -f 04-rol…...

mongodb——原理简介,docker单机部署

MongoDB noSQL数据库 特点 数据文件存储格式为 BSON (JSON 的扩展) {“name”:“joe”}这是 BSON 的例子,其中"name"是键,"joe"是值。键值对组成了 BSON 格式。面向集合…...

ThinkPHP 系列漏洞

目录 2、thinkphp5 sql注入2 3、thinkphp5 sql注入3 4、 thinkphp5 SQL注入4 5、 thinkphp5 sql注入5 6、 thinkphp5 sql注入6 7、thinkphp5 文件包含漏洞 8、ThinkPHP5 RCE 1 9、ThinkPHP5 RCE 2 10、ThinkPHP5 rce3 11、ThinkPHP 5.0.X 反序列化漏洞 12、ThinkPHP…...

系列十、你说你做过JVM调优和参数配置,请问如何盘点JVM系统的默认值?

一、JVM的参数类型 1.1、标配参数 java -versionjava -help 1.2、XX参数 1.2.1、Boolean类型 公式:-XX:或者- 某个属性值 表示开启、-表示关闭 # 是否打印GC收集细节 -XX:PrintGCDetails -XX:-PrintGCDetails# 是否使用串行垃圾收集器 -XX:UseSerialGC -XX:-UseS…...

Java Web——Web开发介绍

什么是Web开发 Web开发是一种创建和维护全球广域网(World Wide Web)上的网站和应用的技术。全球广域网也称为万维网(www World Wide Web),是一个能够通过浏览器访问的互联网上的巨大信息库。 Web开发的目标是创建功能齐全、易于使用和安全的…...

Vue 数据监听机制及 Vue 2.0 和 Vue 3.0 的比较

Vue 数据监听机制 在 Vue 中,数据的变化通常是通过数据劫持(Data Binding)和观察者模式来实现的。当数据发生变化时,Vue 能够自动更新视图。 Vue 2.0 的数据监听 在 Vue 2.0 中,数据监听是通过 Object.defineProper…...

QT多线程项目中子线程无法修改主线程的ui组件

情况描述 今天我创建了一个QT多线程的工程,框架如下。我希望通过指针的方式,让子线程去直接修改主线程的ui组件,但事与愿违。 class ChildThread : public QThread {Q_OBJECT public:ChildThread (MainThread* par):m_Par(par){}; protecte…...

Python 如何实现备忘录设计模式?什么是备忘录设计模式?Python 备忘录设计模式示例代码

什么是备忘录(Memento)设计模式? 备忘录(Memento)设计模式是一种行为型设计模式,用于捕获一个对象的内部状态,并在对象之外保存这个状态,以便在需要时恢复对象到先前的状态。这种模…...

LangChain 代理 Agent(学习笔记)

原文:LangChain 代理 Agent(学习笔记) - 尘叶心繁的专栏 - TNBLOG LangChain 代理 Agent(学习笔记) LangChain 代理 Agent(学习笔记) 简介Agent Zero-shot ReActStructured Input ReActOpenAI FunctionsConversationalSelf ask with searchReAct document storePlan…...

实验三 页面置换算法

一. 实验目的: 1、熟悉虚存管理的各种页面淘汰算法 二、实验环境: 硬件环境:计算机一台,局域网环境; 软件环境:Windows XP及以上版本 Professional操作系统平台,Visual C 6.0专业版或企业版…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者&#xff1a;来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布&#xff0c;Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明&#xff0c;Elastic 作为 …...

向量几何的二元性:叉乘模长与内积投影的深层联系

在数学与物理的空间世界中&#xff0c;向量运算构成了理解几何结构的基石。叉乘&#xff08;外积&#xff09;与点积&#xff08;内积&#xff09;作为向量代数的两大支柱&#xff0c;表面上呈现出截然不同的几何意义与代数形式&#xff0c;却在深层次上揭示了向量间相互作用的…...