TensorRT量化工具pytorch_quantization代码解析(二)
有些地方看的不是透彻,后续继续补充!
继续看张量量化函数,代码位于:tools\pytorch-quantization\pytorch_quantization\tensor_quant.py
ScaledQuantDescriptor
量化的支持描述符:描述张量应该如何量化。QuantDescriptor和张量定义了量化张量。
class ScaledQuantDescriptor():def __init__(self, num_bits=8, name=None, **kwargs):if not isinstance(num_bits, int):raise TypeError("num_bits must be an integer, not {}.".format(type(num_bits)))if num_bits < 0:raise ValueError("num_bits must be >= 0, not {}.".format(num_bits))if num_bits == 0:logging.error("num_bits is 0. This will result in the tensor being quantized to all zeros."" This mode should only be used for debugging purposes.")self._num_bits = num_bitsif not isinstance(name, str) and name is not None:raise TypeError("name must be a string or None, not {}.".format(type(name)))self._name = nameself._fake_quant = kwargs.pop('fake_quant', True)self._axis = kwargs.pop('axis', None)if self._axis is not None:logging.debug("Meaning of axis has changed since v2.0. Make sure to update.")self._learn_amax = kwargs.pop('learn_amax', False)if self._learn_amax and self._axis is not None:raise TypeError("axis is ignored and must be None when learn_amax is true, got {}.".format(type(self._axis)))amax = kwargs.pop('amax', None)if amax is not None:if not isinstance(amax, float) and not isinstance(amax, list) and not isinstance(amax, np.ndarray):raise TypeError("amax must be float, list or ndarray, not {}".format(type(amax)))# Make it single precision arrayself._amax = np.array(amax, dtype=np.float32)else:self._amax = amaxself._scale_amax = kwargs.pop('scale_amax', None)self._calib_method = kwargs.pop('calib_method', "max")self._unsigned = kwargs.pop('unsigned', False)self._narrow_range = kwargs.pop('narrow_range', False)if kwargs:raise TypeError("Unused keys: {}".format(kwargs.keys()))
参数:
- num_bits:int,量化位数,用于计算比例因子。默认值8。
- name:看起来很不错
关键字参数:
-
fake_quant:布尔值。如果为True,则使用fake量化模式。默认为True -
axis:None, int或整数的tuple,轴将利用自己的最大值以计算缩放因子,默认None。- 如果None(默认值),则使用
per tensor scale。
确保在范围[-rank(input_tensor),rank(输入_tensor))内。
例如,对于KCRS权重张量,quant_axis=(0)将产生per channel scaling。
- 如果None(默认值),则使用
-
amax:用户指定的绝对最大范围的float或list/ndarray。如果提供,忽略quant_axis并使用它进行量化。如果learn_amax为True,将用于初始化可学习的amax。默认None -
learn_amax:boolean,如果为True,学习amax。默认为False。 -
scale_amax:float,如果提供,将amax乘以scale_amax,默认无。 -
calib_method:string,[“max”,“histogram”]中的一个校准要使用的指标。除了
max calibration,其他都是基于hisogram的。默认值“max”。 -
unsigned:Boolean,如果为True,则使用无符号。默认为False。
Raises:
- TypeError:如果传入了不支持的类型。
Read-only properties:
fake_quant:name:learn_amax:scale_amax:axis:calib_method:num_bits:amax:unsigned:
QuantDescriptor定义了张量应该如何量化。预定义的QuantDescriptor张量描述符如下:
QuantDescriptor = ScaledQuantDescriptor# Predefined descriptors
QUANT_DESC_8BIT_PER_TENSOR = QuantDescriptor(num_bits=8)
QUANT_DESC_UNSIGNED_8BIT_PER_TENSOR = QuantDescriptor(num_bits=8, unsigned=True)
QUANT_DESC_8BIT_CONV1D_WEIGHT_PER_CHANNEL = QuantDescriptor(num_bits=8, axis=(0))
QUANT_DESC_8BIT_CONV2D_WEIGHT_PER_CHANNEL = QuantDescriptor(num_bits=8, axis=(0))
QUANT_DESC_8BIT_CONV3D_WEIGHT_PER_CHANNEL = QuantDescriptor(num_bits=8, axis=(0))
QUANT_DESC_8BIT_LINEAR_WEIGHT_PER_ROW = QuantDescriptor(num_bits=8, axis=(0))
QUANT_DESC_8BIT_CONVTRANSPOSE1D_WEIGHT_PER_CHANNEL = QuantDescriptor(num_bits=8, axis=(0))
QUANT_DESC_8BIT_CONVTRANSPOSE2D_WEIGHT_PER_CHANNEL = QuantDescriptor(num_bits=8, axis=(0))
QUANT_DESC_8BIT_CONVTRANSPOSE3D_WEIGHT_PER_CHANNEL = QuantDescriptor(num_bits=8, axis=(0))
如果在QuantDescriptor中给出最amax,TensorQuantizer将使用它进行量化。否则,TensorQuantizer将计算amax,然后进行量化。amax被计算通过指定的axis轴。注意QuantDescriptor将剩余轴指定与max()轴相反。
例子:
from pytorch_quantization.tensor_quant import QuantDescriptor
from pytorch_quantization.nn.modules.tensor_quantizer import TensorQuantizerquant_desc = QuantDescriptor(num_bits=4, fake_quant=False, axis=(0), unsigned=True)
接下来看量化函数:pytorch_quantization提供3个自定义的张量量化函数算子,继承torch.autograd.function,实现函数的前向传播、反向传播
TensorQuantFunction
- 通用的张量量化函数
TensorQuantFunction
class TensorQuantFunction(Function):"""一个输入张量,输出一个量化张量。`scale`的粒度可以从amax的形状来解释"""
forward
在前向过程中,对浮点权重和激活进行伪量化,并使用这些伪量化的权重和激活来执行层的操作
@staticmethoddef forward(ctx, inputs, amax, num_bits=8, unsigned=False, narrow_range=True):ctx.save_for_backward(inputs, amax)outputs, scale = _tensor_quant(inputs, amax, num_bits, unsigned, narrow_range)# Check if scale overflows FP16if outputs.dtype == torch.half and scale.max() > 65504:raise ValueError("scale is too large for FP16 with amax={}".format(amax))return outputs, scale.to(inputs.dtype)
output_dtype指示量化值是以整数还是浮点形式存储。希望将其存储在浮点中的原因是pytorch函数接受量化值,它可能不接受整数输入,例如Conv2D。
它使用2num_bits−12^{num\_bits-1}2num_bits−1值,例如,对于num_bits=8,使用[-127,127]
遵循tensorflow约定,传入最大值并用于确定比例,而不是直接输入比例。尽管直接输入比例可能更自然。
参数:
-
ctx:一个用于向后存储张量的Context对象。 -
inputs:float32型张量。 -
amax:float32型张量。输入将在[-amax,amax]范围内量化,amax将广播到inputs tensor。 -
num_bits:用于计算缩放因子的整数,scale=(2num_bits−1−1)/maxscale=(2^{num\_bits-1}-1)/maxscale=(2num_bits−1−1)/max。默认值8。 -
output_dtype:张量的一种类型。torch.int32或torch.float32。希望存储为float,pytorch函数接受float量化值,它可能不接受整数输入。
unsigned:boolean,使用无符号整数范围。例如,对于num_bits=8,[0,255]。默认为False。 -
narrow_range:布尔值。使用对称整数范围进行有符号量化
例如,对于num_bits=8,用[-127,127]代替[-128,127]。默认为True。
Returns:
-
outputs:output_dtype类型的张量。 -
scale:float32型张量。outputs / scale将对输出张量进行反量化。
Raises:
ValueError:
backward
通过clipping实现直通估计。对于-amax<=input<=amax,梯度直接通过,否则梯度为零。
参数:
ctx:一个上下文对象,其中保存了来自forward的张量。grad_outputs:outputs梯度张量。grad_scale:scale梯度张量。
Returns:
grad_inputs:梯度张量。
@staticmethoddef backward(ctx, grad_outputs, grad_scale):"""Implements straight through estimation with clipping. For -amax <= input <= amaxthe gradient passes straight through, otherwise the gradient is zero.Args:ctx: A Context object with saved tensors from forward.grad_outputs: A tensor of gradient of outputs.grad_scale: A tensor of gradient of scale.Returns:grad_inputs: A tensor of gradient."""inputs, amax = ctx.saved_tensorszero = grad_outputs.new_zeros(1) # create a zero tensor with the same type and devicegrad_inputs = torch.where(inputs.abs() <= amax, grad_outputs, zero)return grad_inputs, None, None, None, None
tensor_quant = TensorQuantFunction.apply
给TensorQuantFunction.apply赋予一个别名tensor_quant,这样可以直接调用tensor_quant进行量化,例如:
from pytorch_quantization import tensor_quant# Generate random input. With fixed seed 12345, x should be
# tensor([0.9817, 0.8796, 0.9921, 0.4611, 0.0832, 0.1784, 0.3674, 0.5676, 0.3376, 0.2119])
torch.manual_seed(12345)
x = torch.rand(10)# quantize tensor x. quant_x will be
# tensor([126., 113., 127., 59., 11., 23., 47., 73., 43., 27.])
# with scale=128.0057
quant_x, scale = tensor_quant.tensor_quant(x, x.abs().max())
FakeTensorQuantFunction
class FakeTensorQuantFunction(Function):"""Fake version of TensorQuantFunctionSee comments of TensorQuantFunction, arguments are the same."""@staticmethoddef forward(ctx, inputs, amax, num_bits=8, unsigned=False, narrow_range=True):ctx.save_for_backward(inputs, amax)outputs, scale = _tensor_quant(inputs, amax, num_bits, unsigned, narrow_range)return outputs / scale.to(inputs.dtype)@staticmethoddef backward(ctx, grad_outputs):inputs, amax = ctx.saved_tensorszero = grad_outputs.new_zeros(1)grad_inputs = torch.where(inputs.abs() <= amax, grad_outputs, zero)return grad_inputs, None, None, None, None
在向后过程中,使用权重的渐变来更新浮点权重。为了处理量化梯度,除了未定义的点之外,几乎所有地方都是零,可以使用 直通估计器 ( STE ),它通过伪量化操作符传递梯度。
fake_tensor_quant = FakeTensorQuantFunction.apply
给TensorQuantFunction.apply赋予一个别名fake_tensor_quant,这样可以直接调用fake_tensor_quant进行量化,例如:
from pytorch_quantization import tensor_quant# Generate random input. With fixed seed 12345, x should be
# tensor([0.9817, 0.8796, 0.9921, 0.4611, 0.0832, 0.1784, 0.3674, 0.5676, 0.3376, 0.2119])
torch.manual_seed(12345)
x = torch.rand(10)# fake quantize tensor x. fake_quant_x will be
# tensor([0.9843, 0.8828, 0.9921, 0.4609, 0.0859, 0.1797, 0.3672, 0.5703, 0.3359, 0.2109])
fake_quant_x = tensor_quant.fake_tensor_quant(x, x.abs().max())
_tensor_quant
def _tensor_quant(inputs, amax, num_bits=8, unsigned=False, narrow_range=True):"""Shared function body between TensorQuantFunction and FakeTensorQuantFunction"""# Fine scale, per channel scale will be handled by broadcasting, which could be tricky. Pop a warning.if isinstance(amax, torch.Tensor) and inputs.dim() != amax.dim():logging.debug("amax %s has different shape than inputs %s. Make sure broadcast works as expected!",amax.size(), inputs.size())logging.debug("{} bits quantization on shape {} tensor.".format(num_bits, inputs.size()))if unsigned:if inputs.min() < 0.:raise TypeError("Negative values encountered in unsigned quantization.")# Computation must be in FP32 to prevent potential over flow.input_dtype = inputs.dtypeif inputs.dtype == torch.half:inputs = inputs.float()if amax.dtype == torch.half:amax = amax.float()min_amax = amax.min()if min_amax < 0:raise ValueError("Negative values in amax")max_bound = torch.tensor((2.0**(num_bits - 1 + int(unsigned))) - 1.0, device=amax.device)if unsigned:min_bound = 0elif narrow_range:min_bound = -max_boundelse:min_bound = -max_bound - 1scale = max_bound / amaxepsilon = 1. / (1<<24)if min_amax <= epsilon: # Treat amax smaller than minimum representable of fp16 0zero_amax_mask = (amax <= epsilon)scale[zero_amax_mask] = 0 # Value quantized with amax=0 should all be 0outputs = torch.clamp((inputs * scale).round_(), min_bound, max_bound)if min_amax <= epsilon:scale[zero_amax_mask] = 1. # Return 1 makes more sense for values quantized to 0 with amax=0if input_dtype == torch.half:outputs = outputs.half()return outputs, scale
待梳理!!!
相关文章:
TensorRT量化工具pytorch_quantization代码解析(二)
有些地方看的不是透彻,后续继续补充! 继续看张量量化函数,代码位于:tools\pytorch-quantization\pytorch_quantization\tensor_quant.py ScaledQuantDescriptor 量化的支持描述符:描述张量应该如何量化。QuantDescriptor和张量…...
buu [BJDCTF2020]easyrsa 1
题目描述 : from Crypto.Util.number import getPrime,bytes_to_long from sympy import Derivative from fractions import Fraction from secret import flagpgetPrime(1024) qgetPrime(1024) e65537 np*q zFraction(1,Derivative(arctan(p),p))-Fraction(1,Deri…...
taobao.user.openuid.getbyorder( 根据订单获取买家openuid )
¥免费不需用户授权 根据订单获取买家openuid,最大查询30个 公共参数 请求地址: HTTP地址 http://gw.api.taobao.com/router/rest 公共请求参数: 请求示例 TaobaoClient client new DefaultTaobaoClient(url, appkey, secret); UserOpenuidGetbyorderR…...
Mac iTerm2 rz sz
1、安装brew(找了很多🔗,就这个博主的好用) Mac如何安装brew?_行走的码农00的博客-CSDN博客_mac brew 2、安装lrzsz brew install lrzsz 检查是否安装成功 brew list 定位lrzsz的安装目录 brew list lrzsz 执…...
高通平台开发系列讲解(Sensor篇)Gsensor基础知识
文章目录 一、什么是SENSOR?二、Sensor的分类及作用三、Gsensor的工作原理及介绍3.1、常见Gsensor3.2、Gsensor的特性沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇文章将介绍 Sensor 基础 一、什么是SENSOR? 传感器(英文名称:sensor )是一种检测装置,能感…...
图像处理实战--Opencv实现人像迁移
前言: Hello大家好,我是Dream。 今天来学习一下如何使用Opencv实现人像迁移,欢迎大家一起参与探讨交流~ 本文目录:一、实验要求二、实验环境三、实验原理及操作1.照片准备2.图像增强3.实现美颜功能4.背景虚化5.图像二值化处理6.人…...
OnlyOffice验证(二)在Centos7上部署OnlyOffice编译结果
在Centos7上部署OnlyOffice编译结果 此处将尝试将OnlyOffice验证(一)DocumentServer编译验证的结果部署到Centos7上。并且使用其它服务器现有的RabbitMq和Mysql。 安装Nginx 先安装Nginx需要的依赖环境: yum install openssl* -y yum insta…...
6.补充和总结【Java面试第三季】
6.补充和总结【Java面试第三季】前言推荐6.补充和总结69_总结闲聊回顾和总结继续学习最后前言 2023-2-4 19:08:01 以下内容源自 【尚硅谷Java大厂面试题第3季,跳槽必刷题目必扫技术盲点(周阳主讲)-哔哩哔哩】 仅供学习交流使用 推荐 Jav…...
基于ssm框架大学生社团管理系统(源码+数据库+文档)
一、项目简介 本项目是一套基于ssm框架大学生社团管理系统,主要针对计算机相关专业的正在做bishe的学生和需要项目实战练习的Java学习者。 包含:项目源码、数据库脚本等,该项目可以直接作为bishe使用。 项目都经过严格调试,确保可…...
vulnhub靶场NAPPING: 1.0.1教程
靶场搭建靶机下载地址:Napping: 1.0.1 ~ VulnHub直接解压双击ova文件即可使用软件:靶机VirtualBox,攻击机VMware攻击机:kali信息收集arp-scan -l上帝之眼直接来看看网站可以注册账号,那就先试试。注册完后登入哦。要输…...
Docker基本介绍
最近需要将项目做成一个web应用并部署到多台服务器上,于是就简单学习了一下docker,做一下小小的记录。 1、简单介绍一下docker 我们经常遇到这样一个问题,自己写的代码在自己的电脑上运行的很流畅,在其他人电脑上就各种bug&…...
可用于标记蛋白质216699-36-4,6-ROX,SE,6-羧基-X-罗丹明琥珀酰亚胺酯
一.6-ROX,SE产品描述:6-羧基-X-罗丹明琥珀酰亚胺酯(6-ROX,SE)是一种用于寡核苷酸标记和自动DNA测序的荧光染料,可用于标记蛋白质,寡核苷酸和其他含胺分子的伯胺(-NH2)。西…...
高数:极限的定义
目录 极限的定义: 数列极限的几何意义: 由极限的定义得出的极限的两个结论: 编辑 极限的第三个结论: 例题 方法1: 编辑 方法2: 编辑 方法3: 编辑 极限的定义: 如何理…...
大数据技术之Hadoop
第1章 Hadoop概述1.1 Hadoop是什么1.2 Hadoop发展历史(了解)1.3 Hadoop三大发行版本(了解)Hadoop三大发行版本:Apache、Cloudera、Hortonworks。Apache版本最原始(最基础)的版本,对于…...
一文带你搞懂Go语言函数选项模式,Go函数一等公民。
前言 通过这篇文章《为什么说Go的函数是”一等公民“》,我们了解到了什么是“一等公民”,以及都具备哪些特性,同时对函数的基本使用也更加深入。 本文重点介绍下Go设计模式之函数选项模式,它得益于Go的函数是“一等公民”&#…...
Window.location 详细介绍
如果你需要获取网站的 URL 信息,那么 window.location 对象就是为你准备的。使用它提供的属性来获取当前页面地址的信息,或使用其方法进行某些页面的重定向或刷新。 https://www.samanthaming.com/tidbits/?filterJS#2 window.location.origin → htt…...
js侧滑显示删除按钮
效果图: <!DOCTYPE html> <html><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0, maximum-scale1.0, user-scalableno"><title>js侧滑显示删…...
Python - DIY - 使用dump取json某些键值对合成新的json文件
Python - Json处理前言:应用场景:基本工具:文件操作:打开文件:写文件:读文件:关闭文件并刷新缓冲区:Json字符串和字典转换:json.loads():json.dumps():Json文…...
深度剖析指针(中)——“C”
各位CSDN的uu们你们好呀,今天小雅兰的内容仍旧是深度剖析指针噢,在上一篇博客中,我已经写过了字符指针、数组指针、指针数组、数组传参和指针传参的知识点,那么这篇博客小雅兰会讲解一下函数指针、函数指针数组 、指向函数指针数组…...
论文阅读 | Video Frame Synthesis using Deep Voxel Flow
前言: 视频帧生成方法(视频插帧/视频预测)ICCV2017 oral Video Frame Synthesis using Deep Voxel Flow 引言 当下进行视频帧合成的方法分为两种,第一种是光流法,光流准确的话效果好,光流不准确的话则生…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...
系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...
人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型
在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...
Mysql故障排插与环境优化
前置知识点 最上层是一些客户端和连接服务,包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念,为通过安全认证接入的客户端提供线程。同样在该层上可…...
rm视觉学习1-自瞄部分
首先先感谢中南大学的开源,提供了很全面的思路,减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接:https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架: 代码框架结构:readme有…...
