当前位置: 首页 > news >正文

多视图聚类的论文阅读(一)

当聚类的方式使用的是某一类预定义好的相似性度量时, 会出现如下情况:

数据聚类方面取得了成功,但它们通常依赖于预定义的相似性度量,而这些度量受原始方法的影响:当输入维数相对较高时,往往是无效的。

1. Deep Multi network Embedded Clustering

主要提出使用 DEC(deep Embed clutering ) 深度编码聚类的 方法,对特征进行聚类;

在此基础上加上了几个 多视图的特征;

2. Deep convolutional self-paced clustering

本文中主要用到的研究方法有:

  1. 无监督聚类;
  2. 自步学习方式, 将样本从简单到困难的学习方式;

2.1 存在问题与提出的解决方法

2.1.1 存在问题

当数据点均匀地分布在特征空间中相应的质心周围时,Kmeans算法非常有效。然而,K-means通常不适用于高维数据,因为“维数诅咒”造成的相似度度量效率低下。

2.1.2 解决方法

论文的主要贡献:
具体而言,

  1. 在预训练阶段,我们提出利用卷积自动编码器来提取包含空间相关信息的高质量数据表示。

  2. 然后,在精调阶段,直接对学习到的特征施加聚类损失,共同进行特征细化和聚类分配。我们保留解码器,以避免特征空间因聚类损失而被扭曲。

  3. 为了稳定整个网络的训练过程,我们进一步引入了自步长学习机制,并在每次迭代中选择最自信的样本。通过对7个流行图像数据集的综合实验,我们证明了所提出的算法可以持续地超过最先进的竞争对手。

前两个表明, 将特征学习与聚类过程 作为互相辅助的过程,
第三点使用自步 学习的方式,优化过程中样本由易到难,边际样本的不利影响可以得到有效的缓解。 是为了降低不可靠的样本会混淆甚至误导DNN的训练过程,从而严重降低聚类性能。

简单说来, 使用卷积提取特征; 然后对特征进行聚类; 3. 并且在训练过程中,引入自步学习步长机制, 每次迭代过程中选择,最自信的样本;

2.2 实现方法

具体来说,我们的方法包含两个阶段:预训练和微调。

  • 在预训练阶段,我们通过最小化重构损失来训练卷积自动编码器 (convolutional autoencoder, CAE) [26]通过使用 CAE,我们的方法可以将数据从一个相对高维和稀疏的空间转换为一个低维和紧凑的空间。

  • ,在微调阶段,不同于以往的一些作品[31,32,37]只保留编码器,我们通过使用聚类损失和重构损失对整个自动编码器(即CAE)进行调优,这样可以保留数据属性,避免特征空间的破坏。

  • 问题: 代过程中选择,最自信的样本, 那么如何知道哪些样本的可信度高;

3. 多视图表示学习

4. 聚类方法

采用几种聚类方法与DCSPC方法进行比较,大致可分为三类:

  • 1)传统方法,包括Kmeans (KM)[5]、高斯混合模型(GMM)[6]和谱聚类(SC) [7];

  • 2)基于表示的方法,包括SAE[25]和CAE[26];

  • 3)深度聚类方法,由深度嵌入聚类组成(DEC)[32]、改进深度嵌入聚类(IDEC)[33]、深度嵌入网络(DCN)[34]、深度K-means (DKM)[35]、卷积深度嵌入聚类(ConvDEC)[36]、自适应自步调聚类(ASPC)[37]、结构深度嵌入网络(SDCN)[38]、半监督深度嵌入聚类(SDEC)[39]、DDC (deep density-based clustering)[40]

4.1 K means 聚类

当数据点均匀地分布在特征空间中相应的质心周围时,Kmeans算法非常有效。然而,K-means通常不适用于高维数据,因为“维数诅咒”造成的相似度度量效率低下。因此,在实际应用中,我们应该使用降维方法,如PCA[8]、MDS[9]、NMF[10]等,将原始数据投影到低维空间,然后使用K-means算法对低维数据进行聚类,通常会得到更好的结果。除上述线性降维方法外,非线性算法如tSNE[17]、LLE[18]和基于dnn的方法[19-21]被广泛应用于Kmeans算法前的预处理。有兴趣的读者可参考[22-24]进行全面了解。在许多实际应用中,数据可能来自不同的视图,因此,许多多视图聚类方法被提出。例如,Zhang et al.[13]先将多视图样本映射到共享视图空间,然后将样本转换到判别空间,最后对转换后的样本进行K-means聚类。Wang et al.[14]提出了一种通用的基于图的多视图聚类框架,该框架通过提取多视图的特征矩阵,融合图矩阵,生成统一的图矩阵进行直接聚类。考虑到训练数据中可能存在特定类不存在的情况,Hayashi et al.[16]提出了一种基于聚类的零射击学习方法,将数据分为不可见类和可见类。

4.2 无监督聚类

深度无监督聚类方法大致可分为两类。一类是通常独立对待特征学习或聚类的方法,即先将原始数据投射到一个低维的特征空间中,然后用常规的聚类算法对特征点进行分组。不幸的是,这种分离的形式会对集群性能造成限制,因为忽略了这一点特征学习和聚类之间的一些潜在关系。

另一类是使用联合优化准则的方法,它同时进行特征学习和聚类,比分离的方法有很大的优越性。最近,人们提出了几种方法来将特征学习和聚类集成到一个统一的框架中。联合无监督学习(Joint unsupervised learning, JULE)[29]提出在统一加权三态损失的基础上,同时引导聚类和表示学习,但计算复杂度较高。Chang et al.[30]提出了成对图像之间二值关系的假设,并开发了深度自适应聚类(deep adaptive clustering, DAC)模型,将聚类任务重新建立为二值两两分类问题,在6个图像数据集上显示出良好的结果。自适应自定步长聚类(ASPC)[37]借鉴硬加权自定步长学习方法,在聚类网络训练时优先考虑高置信度样本,以消除边际样本的负面影响,稳定训练过程。Ren et al.[40]提出了一种基于深度密度的聚类(DDC)技术,该技术可以自适应估计任意形状的数据聚类数量。基于数据增强的深度嵌入聚类(Deep embedded clustering with data augmentation, DECDA)[36]将数据增强技巧引入到原始的深度嵌入聚类框架中,并在4个灰度图像数据集上取得了良好的聚类性能。半监督深度嵌入聚类(semi - supervised deep embedded clustering, SDEC)[39]克服了DEC[32]不能利用先验知识指导训练过程的缺点。

deep adaptive clustering, DAC 模型: Chang J, Wang L, Meng G, Xiang S, Pan C (2017) Deep adaptive
image clustering. In: International Conference on Computer
Vision, pp 5880–5888
https://github.com/vector-1127/DAC

自适应自定步长聚类(ASPC)[37]借鉴硬加权自定步长学习方法,Guo X, Liu X, Zhu E, Zhu X, Li M, Xu X, Yin J (2020) Adaptive
self-paced deep clustering with data augmentation. IEEE Trans Knowl Data Eng
https://github.com/XifengGuo/ASPC-DA;

半监督深度嵌入聚类(semi - supervised deep embedded clustering, SDEC) Ren Y, Hu K, Dai X, Pan L, Hoi SCH, Xu Z (2019) Semi- supervised deep embedded clustering. Neurocomputing 325:121–
130
https://github.com/yongzx/SDEC-Keras;

5. 自步学习

与课程学习[43]的核心思想相似,self-pace learning的目标是学习一个模型,由易到难,逐步引入样本进行训练。这两种方法之间的明显区别是,前者需要预先确定简单和困难的样本,而后者可以自动从数据本身选择顺序。给定一个训练集X ={(x1, y1), (x2, y2),…,(xn, yn)}和以θ为模型参数的训练模型fθ,则自步学习的总体目标可表示为:

在这里插入图片描述

其中,L(·)表示特定问题的损失函数,h(λ, vi)表示独立于L(·)的自步长正则化器,可以以多种形式定义,
V =[v1, v2,…], vn] T代表反映样本复杂性的权重变量,λ是一个参数,称为学习速度,用于控制“模型年龄”,该年龄逐渐增加,以探索更多的样本。当h(λ, vi) =−λvi且vi等于0或1时,自定步学习退化为硬加权形式,即:

在这里插入图片描述
另外,对于用固定的v更新θ,问题(3)退化为加权损失最小化问题,该问题可以通过随机梯度下降(SGD)和反向传播(BP)很容易解决。

到目前为止,自定进度学习已被应用于各种任务和模型。Kumar等人的[44]首次证明了一种自定步学习算法在学习潜在结构支持向量机方面的性能优于目前最先进的方法。在[45]中,成功地将自定步长学习范式应用于时间序列的聚类。 Tang Y, Xie Y, Yang X, Niu J, Zhang W (2021) Tensor multi-
elastic kernel self-paced learning for time series clustering. IEEE
Trans Knowl Data Eng 33(3):1223–1237;

Jiang et al.[46]提出了一种自定进度课程学习(self-pace curriculum learning, SPCL)框架,该框架能够联合考虑先验知识和学习进度。为了同时增强有监督学习的鲁棒性和有效性,[47]等人首先提出了自步速boost learning (SPBL)框架,该框架能够揭示和利用boost与自步速学习的关联。Ren et al.[48]注意到标准的自进度学习可能存在类不平衡问题,通过为每个类分配权重和局部选择实例,精心设计了两种新的软加权方案来弥补这一问题。最近,SPUDRFs[49]在公平性方面解决了自进度学习中的排序和选择的基本问题,并可以方便地与各种深度判别模型结合。在SAMVC[50]中,在多视图聚类模型中引入一种软加权自步长学习形式,以减少离群值和噪声的不利影响,并提出一种自加权策略来判断不同视图的重要性。孟等人的[51]设法提供了一些自我节奏学习范式的解释,以追求理论理解。总的来说,这些文献出版物证实了自节奏学习有助于避免陷入不希望出现的局部最小值,并总体上改善模型的性能。

相关文章:

多视图聚类的论文阅读(一)

当聚类的方式使用的是某一类预定义好的相似性度量时, 会出现如下情况: 数据聚类方面取得了成功,但它们通常依赖于预定义的相似性度量,而这些度量受原始方法的影响:当输入维数相对较高时,往往是无效的。 1. Deep Mult…...

K-Means算法进行分类

已知数据集D中有9个数据点,分别是(1,2),(2,3), (2,1), (3,1),(2,4),(3,5),(4,3),(1,5),(4,2)。采用K-Means算法进行聚类,k2,设初始中心点为(1.1,2.2),(2.3,3.…...

深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv 计算机竞赛

文章目录 0 前言1 课题背景2 实现效果3 DeepSORT车辆跟踪3.1 Deep SORT多目标跟踪算法3.2 算法流程 4 YOLOV5算法4.1 网络架构图4.2 输入端4.3 基准网络4.4 Neck网络4.5 Head输出层 5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 *…...

网络协议入门 笔记一

一、服务器和客户端及java的概念 JVM (Java Virtual Machine) : Java虚拟机,Java的跨平台:一次编译,到处运行,编译生成跟平台无关的字节码文件 (class文件),由对应平台的JVM解析字节码为机器指令 (010101)。 如下图所示&#xff0…...

系列十一、你平时工作用过的JVM常用基本配置参数有哪些?

一、常用参数 1.1、-Xms 功能:初始内存大小,默认为物理内存的1/64,等价于 -XX:InitialHeapSize 1.2、-Xmx 功能:最大分配内存,默认为物理内存的1/4,等价于 -XX:MaxHeapSize 1.3、-Xss 功能:设置…...

如何为视频添加旁白,有哪些操作技巧?

简而言之,画外音是视频的旁白,在教程视频中添加旁白可以使视频更加有趣,并向观看者传达更多的信息。 如果您是视频制作人,想要为视频添加旁白,可阅读以下文章,可以帮助您更好地进行配音。 制作配音的技巧…...

如何简单挖掘公益SRC?

目录 1、寻找漏洞 1)谷歌语法 2)fofa 2、挖掘漏洞 3、提交报告 第一步:“标题”和“厂商信息”和“所属域名” 第二步:其它内容 第三步:复现步骤 0、IP域名归属证明 1、漏洞页 2、该干啥 3、注入的结果 4、上榜吉时 时间&#x…...

PhpStorm激活

https://www.lmcc.top/articles/485.html 可用: 1、打开https://search.censys.io/ 2、搜索:services.http.response.headers.location: account.jetbrains.com/fls-auth 3、可以看到出现了很多对应跳转到 jetbrains 的服务器IP和网址,我们随便点击一…...

mysql 怎么做定时备份 / mysql 备份 / sql文件导出

在MySQL数据库中,你可以使用不同的方法来定时备份数据库。以下是其中的一种方法,使用Linux系统中的cron任务和mysqldump命令来创建定时备份: 创建备份脚本: 首先,创建一个脚本文件,比如backup_script.sh&am…...

416. 分割等和子集问题(动态规划)

题目 题解 class Solution:def canPartition(self, nums: List[int]) -> bool:# badcaseif not nums:return True# 不能被2整除if sum(nums) % 2 ! 0:return False# 状态定义:dp[i][j]表示当背包容量为j,用前i个物品是否正好可以将背包填满&#xff…...

【软件安装】Centos系统中安装docker容器(华为云HECS云耀服务器)

这篇文章,主要介绍Centos系统中安装docker容器(华为云HECS云耀服务器)。 目录 一、安装docker 1.1、卸载旧版本docker 1.2、更新repo镜像 1.3、安装依赖包 1.4、添加docker-ce镜像 1.5、安装docker-ce 1.6、查看docker安装版本 1.7、…...

GitHub Proxy 快速下载github文件

https://ghproxy.com/ 解决 经常被墙 下载缓慢 访问不了...

大厂秋招真题【栈】Bilibili2019秋招-简单表达式求值

文章目录 题目描述与示例题目描述输入描述输出描述示例输入输出 解题思路代码PythonJavaC时空复杂度 华为OD算法/大厂面试高频题算法练习冲刺训练 题目描述与示例 题目描述 给定一个合法的表达式字符串,其中只包含非负整数、加法、减法以及乘法符号(不…...

(一)RISC-V 指令集及寄存器介绍

1. RISC-V指令集介绍 RISC-V 念作 “risk-five”,代表着 Berkeley 所研发的第五代精简指令集。 该项目 2010 年始于加州大学伯克利(Berkeley)分校,希望选择一款 ISA用于科研和教学。经过前期多年的研究和选型,最终决定…...

二十三种设计模式:解密职责链模式-购物优惠活动的设计艺术

在购物领域,为了吸引和激励消费者,商家常常会推出各种优惠活动,比如满减、打折、赠品等。然而,这些优惠活动的处理逻辑通常较为复杂,需要根据购物订单的条件进行判断和处理。本文将深入探讨职责链模式的实现方式&#…...

竞赛 题目:基于深度学习卷积神经网络的花卉识别 - 深度学习 机器视觉

文章目录 0 前言1 项目背景2 花卉识别的基本原理3 算法实现3.1 预处理3.2 特征提取和选择3.3 分类器设计和决策3.4 卷积神经网络基本原理 4 算法实现4.1 花卉图像数据4.2 模块组成 5 项目执行结果6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基…...

unexpected end of stream on

SpringCloud使用FeignClient调用第三方接口报错unexpected end of stream on ; 解决方法: 1.检查服务器端口是否被占用 lsof -i:端口; 2.nacos添加超时配置:...

【微信小程序篇】- 组件

最近自己在尝试使用AIGC写一个小程序,页面、样式、包括交互函数AIGC都能够帮我完成(不过这里有一点问题AIGC的上下文关联性还是有限制,会经常出现对于需求理解跑偏情况,需要不断的重复强调,并纠正错误,才能得到你想要的…...

使用Sqoop命令从Oracle同步数据到Hive,修复数据乱码 %0A的问题

一、创建一张Hive测试表 create table test_oracle_hive(id_code string,phone_code string,status string,create_time string ) partitioned by(partition_date string) ROW FORMAT DELIMITED FIELDS TERMINATED BY ,; 创建分区字段partition_date&#xff0c…...

NC Cloud uploadChunk文件上传漏洞复现

简介 NC Cloud是指用友公司推出的大型企业数字化平台。支持公有云、混合云、专属云的灵活部署模式。该产品uploadChunk文件存在任意文件上传漏洞。 漏洞复现 FOFA语法: app"用友-NC-Cloud" 访问页面如下所示: POC:/ncchr/pm/fb/…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

【免费数据】2005-2019年我国272个地级市的旅游竞争力多指标数据(33个指标)

旅游业是一个城市的重要产业构成。旅游竞争力是一个城市竞争力的重要构成部分。一个城市的旅游竞争力反映了其在旅游市场竞争中的比较优势。 今日我们分享的是2005-2019年我国272个地级市的旅游竞争力多指标数据&#xff01;该数据集源自2025年4月发表于《地理学报》的论文成果…...

OpenHarmony标准系统-HDF框架之I2C驱动开发

文章目录 引言I2C基础知识概念和特性协议&#xff0c;四种信号组合 I2C调试手段硬件软件 HDF框架下的I2C设备驱动案例描述驱动Dispatch驱动读写 总结 引言 I2C基础知识 概念和特性 集成电路总线&#xff0c;由串网12C(1C、12C、Inter-Integrated Circuit BUS)行数据线SDA和串…...

无头浏览器技术:Python爬虫如何精准模拟搜索点击

1. 无头浏览器技术概述 1.1 什么是无头浏览器&#xff1f; 无头浏览器是一种没有图形用户界面&#xff08;GUI&#xff09;的浏览器&#xff0c;它通过程序控制浏览器内核&#xff08;如Chromium、Firefox&#xff09;执行页面加载、JavaScript渲染、表单提交等操作。由于不渲…...

安全领域新突破:可视化让隐患无处遁形

在安全领域&#xff0c;隐患就像暗处的 “幽灵”&#xff0c;随时可能引发严重事故。传统安全排查手段&#xff0c;常常难以将它们一网打尽。你是否好奇&#xff0c;究竟是什么神奇力量&#xff0c;能让这些潜藏的隐患无所遁形&#xff1f;没错&#xff0c;就是可视化技术。它如…...

Vue.js教学第二十一章:vue实战项目二,个人博客搭建

基于 Vue 的个人博客网站搭建 摘要: 随着前端技术的不断发展,Vue 作为一种轻量级、高效的前端框架,为个人博客网站的搭建提供了极大的便利。本文详细介绍了基于 Vue 搭建个人博客网站的全过程,包括项目背景、技术选型、项目架构设计、功能模块实现、性能优化与测试等方面。…...